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Chapter I 

INTRODUCTION 

One of the most significant contributions to 

1 
viscous flow theory came in 1904 when Prandtl [i] 

published his boundary-layer theory. Since that time, the 

theoretical analysis of two-dimensional boundary layers 

has been advanced to the point where accurate solutions 

can be obtained rather routinely, even for turbulent flow. 

However, most flows of practical interest are markedly 

turbulent and three-dimensional; hence, the advancement of 

three-dimensional viscous flow calculation methods becomes 

important. 

An effective method to obtain turbulent, viscous 

flow solutions about typically encountered aerodynamic 

configurations is to numerically solve the full Navier- 

Stokes equations (using some means to model the turbulent 

Reynolds stresses). However, this approach is time- 

consuming and expensive (sometimes to the point of being 

prohibitive) due to the large amount of computational 

resources required for fully three-dimensional geometries. 

iNumbers in brackets refer to similarly numbered 
references in the Bibliography. 
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As an alternative, the coupling of an inviscid flow solver 

with a viscous flow (boundary-layer) solver has proved to 

be a useful method for the computation of viscous-inviscid 

interactive flow, particularly two-dimensional steady flow 

(e.g., see [2-4]). The coupling approach has also been 

applied successfully to three-dimensional flow [5]. The 

last several years have seen significant advances in the 

development of three-dimensional Euler equation calcu- 

lation methods [6-9], and as a consequence the advancement 

of three-dimensional boundary-layer solution methods 

becomes important such that practical three-dimensional 

problems can be addressed using the viscous-inviscid 

interaction approach. Therefore, it is the purpose of the 

present study to develop a three-dimensional, compressible, 

turbulent boundary-layer calculation method that can be 

used for transonic flow over adiabatic surfaces. It is 

emphasized that although three-dimensional, viscous- 

inviscid interaction is the ultimate goal, only the viscous 

(boundary-layer) portion of a coupling approach is con- 

sidered here. 

The computation of three-dimensional boundary 

layers over commonly encountered configurations has 

received considerable attention in the past several years 

(e.g., see [10-20]). Typically, a computational method is 

created to cater to a particular need and/or application. 



AEDC-TR-83-37 

The following discussion addresses the reasoning which led 

to the present approach. 

The methods described in [10-20] can be classed as 

either integral or differential. As discussed by East 

[i0], and Smith [21], among others, integral methods are 

computationally faster than differential methods because 

the former have one less space dimension to contend with 

and also because more empiricism is "built into" integral 

methods. Although generally less flexible than differ- 

ential methods, integral methods have proved to be as 

accurate (and in some cases, more accurate) as differen- 

tial methods for two-dimensional steady flow [22,23]. 

Therefore, an integral approach is taken here in the 

interest of speed, and also because the three-dimensional 

method is an extension of an accurate two-dimensional 

method [24]. However, the question of accuracy between 

integral and differential methods for three-dimensional 

flow has been investigated to a much lesser degree than 

two-dimensional methods [10,25,26]. 

When using a coupled approach, it is desirable that 

the viscous and inviscid surface grids (which could be 

nonorthogonal) be interchangeable such that information 

generated by one method can easily be conveyed back to the 

other. For example, surface velocities obtained from the 

inviscid solution must be used as input to the boundary- 
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layer equations. The steady form of the three-dimensional 

boundary-layer equations must be solved on a grid which is 

dictated by domain-of-dependence principles [13,27] 

implying that interpolation is required on each viscous/ 

inviscid iteration. However, if the time-dependent 

boundary-layer equations are used, the condition of inter- 

changeable grids can be achieved, because for a fixed grid 

system an appropriate time step can be chosen to maintain 

computational stability. Thus, a time-dependent approach 

in nonorthogonal coordinates is adopted in order to: 

(i) provide a method that can use the same surface grid as 

an inviscid solver, and (2) account for time accuracy, if 

desired. To the author's knowledge, all previous three- 

dimensional, compressible, turbulent boundary-layer 

calculation methods have been for steady flow. 

The system of equations used herein is the three- 

dimensional, time-dependent, compressible momentum and 

mean-flow kinetic energy integral equations in non- 

orthogonal curvilinear coordinates. To take advantage of 

the previous work in two-dimensional flow, the non- 

orthogonal coordinates are related to streamline coordi- 

nates as suggested by Smith [14]. The streamwise velocity 

profile used is that of Whitfield et al. [28], which can 

be expressed analytically over the entire domain 0 ! x 3 < ~- 

4 
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The cross-flow velocity profile used is the triangular 

model of Johnston [29]. 

In this study, a detailed derivation of the 

boundary-layer integral equations is given. The necessary 

empirical relationships in streamline coordinates are 

listed in addition to the relations between streamwise and 

nonorthogonal quantities for the Johnston [29] cross-flow 

velocity profile. The numerical scheme used and stability 

and convergence for various spatial difference approxi- 

mations are discussed. Finally, computed steady-state 

results are compared with measurements and with compu- 

tations of previous investigators. 

5 
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Chapter II 

DERIVATION OF EQUATIONS 

The derivation of the boundary-layer integral 

equations to be solved is given in this chapter. It is 

important to include the derivation of these equations 

because they apparently do not exist in the literature for 

the general case of three-dimensional, time-dependent, 

compressible flow in nonorthogonal curvilinear coordi- 

nates. An abbreviated version is given in [30], but 

attention here is focused on the details of the development. 

2.1. Differential to Integral Form 

The differential form of the continuity and 

momentum boundary-layer equations for steady flow is given 

by Cebeci et al. [17]. These equations with the time- 

dependent terms are given below in a compact form: 

Continuity: 

a a 
hlh 2 sink + ax I (PUlh 2 sink) + ax 2 (Pu2h I sink) 

+ a 
ax 

3 
(PU3hlh 2 sink) = 0 (2.1) 

6 



Momentum: 

au i au i au i au i 
Phlh2 ~-- + PUlh2 ax I + PU2hl ax 2 + PU3hlh2 ax--3 

AEDC-TR-83-37 

- Phlh 2 cotl Kiu~ + cscl u 2 z Phlh2 Ki+l i+l 

+ Phlh 2 Ki,i+ 1 UlU 2 

= -hi+ 1 csc21 ~ + h cotl cscl ~p 
ax i i axi+ 1 

a~x i 
+ hlh 2 ax 3 (2.2) 

where 

For example, 

~-P--= 0 (2.3) 
ax 3 

i = 1 or 2 

i + 1 - 1 when i = 2 

Ki,i+ 1 = KI2 when i = 1 

Ki,i+ 1 = K21 when i = 2 

That is, when i = i, Eq. (2.2) is the xl-momentum equation, 

and when i = 2, Eq. (2.2) is the x2-momentum equation. 

Equations (2.1) and (2.2) are written for a general non- 

orthogonal curvilinear coordinate system (fixed in time) 

like that depicted in Figure 1 (see Nomenclature for 

definition of terms). It should be noted that h 3 ~ 1 in 

7 



AEDC-TR-83-37 

Line of Constant x 1 
(x 3 = O) - - k  

x 3 , u3 Body 
Surface 

X2,U 2 

Line of Con- 
stant x 2 (x 3 : 0) 

x I, u I 

x 3 _L Xl, x 2 

xt ~ x2 

}, = Angle Directed From x I to x 2 Axis 

~t 

Figure i. 

~ J r  ; x2 

Fixed CartesianSystem 

General Nonorthogonal Curvilinear Coordinate 
System on the Body Surface. 
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Eqs. (2.1) and (2.2) such that x 3 is the actual distance 

measured normal from the surface. Also, density, pressure, 

and velocity appearing in Eqs. (2.1) and (2.2) are time- 

averaged turbulent quantities, and Txi is the total shear 

stress (molecular plus turbulent) in the xi-direction. 

2.1.1. Momentum Integral Equations 

Various methods can be used to arrive at the 

integral form of the equations. The approach taken here 

is to first eliminate the pressure gradient terms from 

Eq. (2.2) as follows: (i) multiply Eq. (2.2) by sinl, 

(2) write this result at the edge of the layer, and then 

(3) subtract this result from that of Step (i), which yields 

i _ _  

Phlh 2 sinl ~ + PUlh 2 
a5 i _ _  i 

sinÂ ax--~ + PU2hl sinl ax 2 

au i _ 52 
+ ~u 3 hlh 2 sinl ~3 + Phlh2 Ki+l i+l 

+ Phlh 2 sinl Ki,i+ 1 UlU 2 - Phlh 2 
-2 cosl K.u. i i 

au i au i 
- Phlh 2 sinl at PUlh 2 sinl ax I Pu2h I sinl 

~u i 
ax 2 

au i 
- PU3hlh 2 sinl ~3 + Phlh 2 cosl Kiu ~ 

2 
- Phlh 2 Ki+ 1 Ui+l - Phlh 2 sinl Ki,i+ 1 UlU 2 

+ hlh 2 sinl 
aTx i 

Bx 3 
= 0 (2.4) 



AEDC-TR-83-37 

where overbars denote boundary layer edge values and the 

assumption of [TXi]edg e = 0 has been made. 

Note t~at the negative of the eighth through the 

eleventh terms of Eq. (2.4) can be written as 

au i 
Phlh 2 sinl ~-- + PUlh 2 sinl 

au i au i 
ax I + Pu2h I sinl 

au i 
+ PU3hlh 2 sinl ax 3 

a sinl) + a = a--t (PUihlh2 
ax I 

(PUlUih 2 sinl) 

+ a 
a (PU2uih I sinl) + ax 3 ax 2 

(PU3Uihlh 2 sinl) 

- ui[~ (Phlh 2 sinl) + a sinl) ax I (PUlh2 

a 
+ ~ (Pu2h I sinl) + a sinl)] ax 3 (PU3hlh2 (2.5) 

and from Eq. (2.1), the term in brackets in Eq. (2.5) is 

zero (metric coefficients are assumed to be invariant with 

time). Using Eq. (2.5) in (2.4) and rearranging, the 

result is 

]0 
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[~ aui _ au i _ a~ i 
hlh 2 sinl ~ + ph 2 sinl Ul a~l + phl sinl u2 

+ PU3hlh 2 sinl a-~3 ]- (PUihlh 2 sinX) 

a ( sinx) + a sinx) + ax I PUiUlh2 ax 2 (PU2Uihl 

a )I[ -~2 2 + ax 3 (PU3Uihlh 2 sinX_ .- hlh 2 cosl K i (p i - PUi) 

- hlh2 Ki+l (PUi+l - "+11 

] 
hlh 2 sinl Ki,i+ 1 (PUlU 2 - PUlU2) j 

@ [ a~xi] 
+ hh2 sinx j= 0 

® 
(2.6) 

(The numbered brackets appearing in Eq. (2.6) will be used 

later on). By assuming aui/ax 3 = 0, adding and subtracting 

the term 

- a - sinX) (0Uihlh2 sinX) + a~l (PUlUih2 

+ x9-~2 (PU2Uihl sinX) + -aT (PU3Uihlh 2 sinX) 

in Eq. (2.6), and using Eq. (2.1) in a similar fashion as 

in Eq. (2.5), some algebraic manipulation yields 

]! 
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L [hlh 2 sinl p(u - at i 
a~ i 

ui)] + hlh 2 sinl(~-p) a-{- 

a a [h I sinl PU2(Ui-Ui) ] + ~Tl[h 2 sinl PUl(U i - ui) ] + a~ 2 

m - -  

+ h 2 sinl (p u I 

m m 

au. au 
l ---- 1 

- pu 1) ax 1 + h 1 s i n ~ ( p u  2 - pu 2) ax  2 

- hlh 2 cosl K i ----2 2 ----2 2 (pu i - pu i) + hlh 2 Ki+l(PUi+l-PUi+ I) 

+ hlh 2 sinl Ki,i+l(PUlU 2 - PUlU 2) 

a 
+ a~3 [hlh2 sinl pu 3 (u. - u.)] 

I l 

aTx i 
+ hlh 2 sinl ax 3 = 0 (2.7) 

Rearranging the first line of Eq. (2.7) and using the 

identities 

m 

~u~-pu i = ui(PUi-PUi)+ PUi(Ui-U i) (2.8a) 

m 

PUlU2-PUlU 2 = ui(puj-puj)+ puj(ui-u i) , i~j (2.8b) 

results in 

]2 



AEDC-TR-83-37 

hlh2 sinl[~t (PUi-Pui) -ui ~t (P-P)] 

-- ~ui ~i 
+ h2 sinl(Pul-PUl) ~i + hl sinX(~u2-Pu2) ~2 

+ ! [ sinX(~i_ui)] + Bx I PUlh2 Bx 2 [PU2hl sinl(ui-ui)] 

8 [ sinX(~ -u.)] + ~x---3 PU3hlh2 i z - hlh 2 cosl Ki[ui(Pui-PUi ) 

m m m  

+ Pui(ui-ui)] + hlh 2 Ki+l[Ui+l(PUi+l-PUi+ I) 

+ PUi+l(Ui+l-Ui+l)] 

+ hlh 2 sinX Ki~i+l[Ui(PUi+l-PUi+l)+ PUi+l(Ui-Ui)] 

8Tx i 
+ hlh 2 sinX 8x 3 = 0 (2.9) 

The x l- and x2-momentum integral equations are obtained by 

integrating Eq. (2.9) over 0 ! x 3 < =- Using the 

assumption that surface metrics are independent of x 3 [31], 

defining the following integral thicknesses as 

OO 

=/ ( 5i -  ui)dx3 (2.10a) 

~q28ij =0 $ puj(u i - ui)dx 3 (2.10b) 

]3 
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= $ puj(~'.2 _ u 2)dx3 ~q3eij 0 . , z  .1. (2.10c) 

= I (ui - ui)dx3 
0 

(2.10d) 

= $ (p - p)dx 3 pep 0 
(2.10e) 

and considering only an impermeable wall; i.e., 

(PU3)wall = 0, Eq. (2.9) becomes 

p 

+ 1 la_~l --2 ) 
~2 hlh2 sinl (pq h 2 sinX eil 

;) --2 )l 
+ a-~2(pq h I sinX ei2 

_ + _ K. cotX + 8 i 
hl q ax I h2 q ax 2 1 6i 

l/Ui+l 
+ Ki+ 1 csc ~ ~ 6~+ 1 + 8i+l,i+l> 

+ Ki,i+ 1 61+1 + 8i,i+ - 
1 = 0 (2.11) Cfx i 

where q is the resultant boundary-layer edge velocity and 

is the local skin friction coefficient defined as Cfx i 

14 ,, 
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(2.12) 

The x I- and x2-momentum integral equations result from 

Eq. (2.11) by setting i = 1 or i = 2, respectively. Again 

note that a subscript 3 resulting from i + 1 when i = 2 is 

taken as subscript I. Also, a comma between subscripts 

such as 8i,i+ 1 is taken as 812 for i = 1 and 821 for i = 2. 

2.1.2. Mean-Flow Kinetic Energy Integral Equation 

To obtain the mean-flow kinetic energy integral 

equation, the approach is to multiply Eq. (2.6) by ui, 

integrate both over 0 ! x 3 < =, and then sum the two 

resulting integral equations. One can begin this program 

by multiplying Eq. (2.6) by u i and writing the result as 

i i i + i) = 0 (2.13) 
ui(L 1 + L 2 + L 3 L 4 

where subscripts 1 to 4 in Eq. (2.13) denote the terms 

included within the similarly numbered brackets of 

Eq. (2.6), and subscript i on u i and superscript i on L i 

i 
are one or two. Note the uiL 2 term of the above can be 

written as 

Li .[~( hlh 2 sinl) + 8 ( h 2 sinx) ui 2 = -uz PUi 8x I PUlU i 

+ 8-~2(Pu2ui hl sinX)+ x~3(Pu3ui hlh 2 sinX)] 

15 
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or, using the continuity equation, 

uiL~ = i[~ t 2 a 2 h2 sinl) - ~ (pu i hlh 2 sinl) + ~i (pulu i 

+ a_a__( 2 !-(PU3U2 hlh 2 sin~(2.14) ax 2 PU2U i h I sinl) + ax 3 

Using Eq. (2.14) in Eq. (2.13) results in 

m w m 

au. au. au. 
- z -- sin~ ax I +-- sin~ z PUihlh 2 sinl at + PUlUih2 PU2Uihl 

-- aui i[~ pU2hlh2 sinl + PU3Uihlh 2 sinl ax 3 2 ( ) 

+ ~(PUlU~h 2 a x  1 sinl) + ~--~--(PU2U~h l a x  2 sinl) 

---2 u 2 
~(PU3U~hlh 2 sinl - hlh 2 cosl Kiui(PU i - p i ) 

+ ax 3 

--2 2 
+ hlh 2 Ki+ 1 ui(PUi+ 1 - PUi+ I) 

+ hlh 2 sinl Ki,i+ 1 ui(PUlU 2 - PUlU 2) 

a~x i 
+ hlh 2 sinl u i ax 3 = 0 (2.15) 

Adding and subtracting the term 

l[~-~(pU~hlh 2 sinl) + !(PUlU~h 2 sinl) 
2 ax 1 

+ a_a__( ~2 8__a_( PU3~hlh 2 sin~)] ax 2 pu 2 ihl sinl) + ax 3 

16 
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to Eq. (2.15) results in 

~Uihlh 2 sinl 8ui 1 U~hlh 2 inl) +-- sinl a~i at 2 ~t (p s PUlUih 2 ax I 

a l~h 2 PU2Uih I ax2 a~l(PU sinl) + -- sinl 

1 a 2U~hl inl) + -- sinl 8~i a~2(PU s PU3Uihlh 2 

2 ax3(pu3u hlh2 sinl) + ~ [hlh 2 sinl p(~21 - u )] 

a 
+ ~-~l[h2 sinl PUl(U ~ 

2 
- ui)] 

+ ~[h I sinl pu (53 - u 2 
ax 2 2 1 i )] 

+ ~-~3[hlh2 s i n l  PU3(U2l - u2')]1 

- hlh 2 cosl KiuiGu ~ - pu 2i ) 

+ hlh2 Ki+l ui ---2 2 (PUi+ 1 - PUi+ I) 

+ hlh 2 sinl Ki,i+ 1 ui(PUlU 2 - PUlU 2) 

+ hlh 2 sinl u i 
aTx i 

ax 3 
= 0 (2.16) 

One can use the continuity equation and rewrite the first 

eight terms of Eq. (2.16) to give 

17 
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a~ i _ a5 i 
hlh 2 sinl(~u i - pSi)~-- + h 2 sinl(~UlU i - PUlUi)~-~l 

_ a5 i 

+ h I sinlG~2u i - PU2Ui)ax-- ~ 

_ aH i 
+ hlh 2 sinl(PU3U i - PU3Ui)~-~3 

+ ½ {~t[hlh2 sinlpCu~ - u 2)]+ ~axl[h2 sinlPUl(U~ - u2)]z 

+ ~-~2[hl sinlpu 2 2)I+ ~[hlh 2 sinlPu3(u2-ui)l 

--~2 2 
- hlh 2 cosl Kiui( p i - PUi) + hlh2 Ki+l ui(PUi+l_PUi+l ) - - 2  2 

+ hlh 2 sinl Ki,i+ 1 ui(PUlU 2 -PUlU2) 

aTx i 
+ hlh 2 sinl u i ax 3 = 0 (2.17) 

Using the identities, 

m ~ l m 

Pui-PU i = ui(p-p)- P(Ui-U i) (2.18a) 

• 5 2 - --2 2 -u )+ ui(PU i )- i(p-p) (2.18b) P(Ui-Ui) = PUi(Ul z -Pui 

pujui-puju i = ui(puj-PU9)- puj(ui-u i) (2.18c) 

-2 . . . .  2 
--2 2 5~-u~)+ ui(PU i ) (ui-ui) (2.18d) ui(Pui-PUi) = PUi( z z -PUi - PUi 

18 
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--2 2 ~2 u 2 )+ -2 -- 
ui(pui+l-PUi+l) = PUi( i+l- i+l Ui+l(PUi-PUi) 

--2 
- PUi+l(~i-u i) 

ui(PUiUj-PUiU j) = puj(52-u~)+z z u~Guj-puj) 

- PUiUj(Ui-U i) , i ~ j 

(2.18e) 

(2.18f) 

integrating over 0 ! x 3 < = using the integral thickness 

definitions given in Eq. (2.10), and again taking 

aui/ax 3 = (PU3)wall = 0, results in 

q 8ii + puiq6i P i 8 

/ui6 ~ 516u~ a5 i <ui6; 526~i.>a5i 
+ --~22 + -2 ax 

+ 1 [~l(h sink ~q3e ) 
2hlh 2 sinl ~3 2 il 

+ ~(h lax 2 sink ~3 ei2)]- cotl K i ii + ~l 6i, 

-2 
e Ui+l 

+ cscl Ki+ 1 i+l,i + ~2 

+ Ki,i+l i,i+l + ~ ~i+l 

f~ dx 3 = 0 
aTx i 

+ 1 u i ~x 3 
0 

-2 
Ui+l , > 
~2 6u i 

uiui+l 6" ) 
ui 

-2 
U. 

l ) ~u i 

(2.19) 
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The mean flow kinetic energy integral equation is obtained 

by summing Eq. (2.19) for i = 1 and i = 2, yielding the 

following clean but formidable equation: 

Op - 6Ul)~-- Op- 6u2)'~-~'- 

211 --2 +u 2 p(Ul 

+ ---3 h2 -- ( ell 1 
2hlh 2 sinl pq 

+ ~ [hl sinl~3(el2 
]} ~i * - 6" ~Ul 

* -- * " ~u2 h2q2 ( * 6* ~Ul + ~! (%~ _U~u~)~ ÷ --~ %~-~ u~)~ 

u 2 , , au 2 
-2(62 - 6u2)~x 2 

h2q 

-2 

- K 1 cot% ii + -----2(61- 6u 1 
q 

--2 [ u2 + ~ csc~ ~ + ~(~;-~* 
u I 

- K 2 cot% Ie22 

--2 --2 u2,,>] [ ul, >] 
+ _~(62-6u2 + K l csc~ ~12 + -~(62 u2 

q q 

+ ~ ~ + ~(u~ u~ u + ~ ~ ~ + (u~-% u~ 

---~ i ~x-q- + u2 ~x-q- dx3 = 
Pq 0 

0 (2.20) 
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Therefore, in summary: (i) the momentum integral equations 

are given by Eq. (2.11) for i = 1 and i = 2, (2) the mean- 

flow kinetic energy integral equation is given by 

Eq. (2.20), and (3) the integral lengths are given by 

Eq. (2.10). All metric coefficients are listed in 

Appendix A. 

It is worth noting that the validity of the deri- 

vation just presented was checked for some special cases 

by comparing Eqs. (2.11) and (2.20) to corresponding 

equations in the literature. For example, Eq. (2.11) for 

i = 1 and Eq. (2.20) reduce to those obtained by McDonald 

et al. [32] for the case of two-dimensional, time-dependent, 

compressible flow. Also, Eqs. (2.11) and (2.20) reduce to 

those given by Nash et al. [31, Eqs. (3.39), (3.40), and 

(3.44), pp. 43 and 45] for the case of three-dimensional, 

steady, incompressible flow using orthogonal curvilinear 

coordinates (i.e., ~ = ~/2). However, the careful reader 

will note that a sign discrepancy exists in one term 

between the xl-momentum integral equation as given by Mager 

[33, Eq. (5.1), p. 298] and Eq. (2.11) for i = 1 for the 

case of three-dimensional, time-dependent, compressible 

flow in orthogonal curvilinear coordinates; whereas, 

Eq. (2.11) for i = 2 and Eq. (5.2) in [33, p. 298] are 

identical for these conditions. After careful scrutiny, 

the present author is convinced that Eqs. (2.11) and (2.20) 

2! 
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are correct and that the sign of the "curl3Q" term in 

Mager's Eq. (5.1) [33, p. 298] should be negative. The 

interested reader is invited to assert himself concerning 

£he origin of this discrepancy. 

2.1.3. Restrictions Pertaining to Steady Edge Conditions 

Equations (2.11) and (2.20) can be written 

'~q i ) -  % ~- (~op = l 
i = 1 or 2 (2.21) 

[ * • 
2~q 31 ~t ~ ~2(811 +822)+ ~q(%61 +U262)- ~Sp(U 1 U 2 

ul)~- c+ o - ~u ~T] : ' c~.22i 

where £. and L are defined by referring to Eqs (2 ii) and 

(2.20). Expanding the derivatives with respect to time 

results in (for i = 1 and i = 2) 

~6( e 

~* ~i De 1 p -- _ 
~t ~ ~t = q£1 T£ 1 

Ul ~2 -- 
ii + 022) = 2q--L -T L--(q£1q -T£ I) -~-- (q£2q -T£ 2) 

~62 ~2 ~)Op_ 
~t ~ ~t q~2 - T~ 2 

(2.23a) 

(2.23b) 

(2.23c) 

22 
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T£ 1 ----- ~t ('P q) ---- ~t 
P q  P q  

T£2 - 

* o U  62 ~ _ v p-2 ~p 

- -  3 t  (~ ~) -- -- ~-{ 
Pq Pq 

1 + ) ~t (~2) + * T L - ~{ ( 011 022 61 ~-~ (pqu I ) 
5q 

• ~ 3 [~ (u--2 +--2 )]) 
+ 62 ~-6 (-Pq~2) -0p ~-t u2 

r(- 1) 2) 2 Ul - 6* + 0 - 6* 
u 0 u 

(2.24a) 

(2.24b) 

(2.24c) 

Up to this point, Eqs. (2.23a,b,c) are valid for time- 

varying edge conditions. The analysis hereafter is 

restricted to the case of steady edge conditions; that is, 

= ~_~ = 8Ul ~u 2 ~M e 
~t ~t 8t ~t ~t 

and therefore, 

T£ = T L = 0 1 = T£2 

This is a physically unrealistic situation in that the 

boundary-layer edge conditions are steady but the boundary- 

layer is unsteady developing from arbitrary initial con- 

ditions that do not correspond to reality. However, the 

solutions were found to be insensitive to initial con- 

ditions as discussed in Chapter 3, Section 3.3. With these 
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restrictions, Eqs. (2.23a,b,c) reduce to 

5i 

~t -- 8t q 

- (2.25a) 

~t ~ (ell + e22) = 2qL - Ul£1 - u2£2 (2.25b) 

~61 ~2 ~ep 
8t ~ ~t = q£2 

(2.25c) 

Equations (2.25a,b,c) contain the 13 integral 

* 6* , and e where i = 1 or 2, and lengths ~i' 8ij' eij' u i p 

j = 1 or 2. In the present analysis, the fundamental step 

which permits the construction of a determinant system of 

equations is the resolution of the three-dimensional, 

turbulent boundary-layer velocity profile into a streamline 

coordinate system with "streamwise" and "cross-flow" com- 

ponents as illustrated in Figure 2. The streamline coordi- 

nate system is formed by the projection onto the body 

surface of the external streamlines with local normals 

constructed to them; the direction of the external stream- 

line is called the "streamwise" direction and the "cross- 

flow" direction is normal to it. This allows each velocity 

component to be modeled separately, which is important 

because it has been observed (see, e.g., [34]) that flow 

in the streamwise direction is remarkably similar to a 

24 
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corresponding two-dimensional boundary layer, and empirical 

relations derived for two-dimensional flow (e.g., skin 

friction and shape factor correlations and velocity 

profile families) provide good approximations to the 

streamwise components of velocity, skin friction, and so 

forth, in a fully three-dimensional boundary layer. 

Once the resolution of the boundary-layer velocity 

components into streamline coordinates has been accom- 

plished, the reduction of the number of unknowns appearing 

in Eq. (2.25) is hinged upon several auxiliary relations: 

(i) empirical relationships in streamline coordinates, 

(2) relations between streamwise integral lengths using 

Johnston's cross-flow profile, and (3) relationships 

between streamwise and nonorthogonal integral lengths. 

The following sections address the manner in which these 

tasks are resolved such that the number of unknowns 

appearing in Eq. (2.25) is reduced to three. In the 

following discussion, integral lengths written with upper- 

case Greek letters represent those in the streamline coor- 

dinates; whereas lower-case letters denote integral lengths 

resolved in the nonorthogonal system (unfortunately, this 

is opposite to the nomenclature used by Smith [14]). 

26 
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2.2. Empirical Relationships in Streamline Coordinates 

The degree of success of an integral boundary-layer 

computational procedure is ultimately related to how well 

the auxiliary relations represent reality. The present 

analysis requires models for (i) the streamwise velocity 

profile, (2) the cross-flow velocity profile, (3) skin 

friction correlations, and (4) shape factor correlations. 

2.2.1. Streamwise Velocity Profile and 
Shape Factor Correlations 

The present work relies heavily upon the velocity 

profile originally postulated by Whitfield [35] for steady, 

two-dimensional, incompressible or compressible adiabatic, 

turbulent boundary layers, which was later extended to 

include profiles with reversed flow [28,36]. It should be 

pointed out that the analytical representations of the 

streamwise and cross-flow velocity profiles do not appear 

explicitly in the analysis; rather, shape factor corre- 

lations and relationships between the streamwise integral 

lengths which are based upon the velocity profiles are 

used. 

The streamwise velocity profile [28,36] is a 

function of "incompressible" values of shape factor, H, and 

momentum thickness Reynolds number, Re011' that is, 

27 
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where 

u 1 q ~ ' ResI 

, 1 dx 3 
Au 0 

U s U 

i 

(2.26) 

(2.27a) 

(As seen in Eq. (2.27a), "incompressible" here means simply 

that integral lengths are defined to be independent of 

density.) In addition, the following shape factors can be 

defined in streamline coordinates as 

and 

A 1 
S = 

811 

e 
=_9__ 

Hep 811 

Eli 

HS, - 811 

@ii V--  
U 

(2.27b) 

(2.27c) 

(2.27d) 

(2.27e) 

where the above streamwise lengths are defined in 

Appendix B. Using Eq. (2.26), it was shown in [24] that 

H, ell/eu, and He, can be correlated with H and edge Mach 
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number, Me, with only a weak dependence upon ReSl I. The 

HS, correlation actually used herein is based upon a 

streamwise velocity profile valid for attached and sepa- 

rated flow [36]. All shape factor correlations used are 

listed in Appendix C, including the HSp correlation 

originally derived by Donegan [37] which was reported 

in [30]. 

2.2.2. Cross-Flow Velocity Profile 

The choice of cross-flow velocity profile repre- 

sentation can have a significant influence on the results 

of the calculations, as shown by the results of Smith's 

integral method [14] reported by East [i0]. Because the 

main objective of the present study was to obtain solutions 

of the three-dimensional, turbulent, integral boundary- 

layer equations, it was decided that the relatively 

uncomplicated triangular model of Johnston [29] would 

suffice, with the understanding that an improved model 

could be used later. Smith [14] also used this model and 

obtained reasonable results for a fairly large class of 

three-dimensional, turbulent boundary-layer test cases 

[14,10,25,26]. However, it was concluded by Johnston 

himself [38], that "there can be no general, universal 

cross-flow model" (for example, consider a "crossover" or 

"s-shaped" profile where the cross-flow velocity is both 

positive and negative over the boundary-layer 
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thickness [38]). This is undoubtedly one of the weakest 

areas concerning the use of integral methods for the calcu- 

lation of three-dimensional turbulent boundary layers. 

Johnston's cross-flow model [29] is given as 

U ,, 
n 

~- = tan(Sw) (2.31a) 
s 

in the thin layer adjacent to the wall, and 

g 
(2.31b) 

over the remaining portion of the boundary layer, where A 

is a parameter which must be related to the limiting wall 

streamline angle, 8 w. In the present case, the relation- 

ship originally given by Johnston [29] and later modified 

by Smith [14] as 

tan(8 w) = A ~c 0.i )] 
f coS(Bw> (1+0.18 M 2e 1/2 

(2.32) 

is used, where cf in the above is the local skin friction 

coefficient resolved along the external streamline flow 

direction (in the present case, 8 w is solved for itera- 

tively by knowing A, cf, and Me). 

2.2.3. Skin Friction 

The skin friction correlation used is that given 

by Whitfield et al. [28], as 
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~f = 

-i. 33H 0.3e 

I lOgl0ReSll )1"74+0"31~ 

+ (l.lxl0 -4 ) Itanh(4 0 ] 
0.875 I-i (.2.33) 

where cf, H, and -Reel I denote "incompressible" values. 

The first term on the right-hand side of Eq. (2.33) was 

derived by White [23] (Eq. 6-179, p. 518) from curve fits 

of the Law-of-the-Wall/Law-of-the-Wake using Coles' 

constants in the Law-of-the-Wall [23]. The second term of 

Eq. (2.33) was originally reported in [39] and later in 

[28] and [36] and was appended to White's relation to 

allow cf to become negative. Although separated flows are 

not addressed in this work, Eq. (2.33) is used because of 

its behavior at high shape factors (for low shape factors, 

the contribution of this term is negligible). 

The relations used to interrelate compressible and 

incompressible variables in Eq. (2.33) are Coles' "Law of 

Corresponding Stations" [40] given as 

ReSll cf = R-eSll cf 

and the correlation of Winter and Gaudet [41], which 

relates cf to Cf by the relation 

(2.34a) 
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~f 
m = F 

cf c 
(2.34b) 

or, in effect 

where 

cf ReSll 1 

~f = Res--~; = ~cc 

F 2 = 1 + 7-I M 2 
c 2 e 

(2.34c) 

(2.34d) 

Finally, the equations used to resolve cf in 

streamwise coordinates into nonorthogonal components 

(which Eqs. (2.25a,b,c) contain) are those used by 

Myring [13] and Smith [14], 

cf = cf F |sin(~) 

x I t 

1 
COS(t) tan (B w) I 

J sin(1) 

F 
Isin(e) + cos(e) tan 

cf 
x2 = Cf t sin(1) 

(Bw) ] 

(2.35a) 

(2.35b) 

where Cfx i is the value of skin friction resolved in the 

x.-direction, e is the angle between the local resultant 
1 

edge velocity vector and the xl-axis , I is the angle 

between the x I- and x2-axes , and ~ ~ l-~. 
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2.2;4. Dissipation Integrals 

As shown in Appendix D, the dissipation integrals 

appearing in Eq. (2.20) can be written in terms of stream- 

wise and cross-flow velocities and then integrated by 

parts using Johnston's cross-flow profile [29], yielding 

0• < 5TXl ~Tx21 dx 3 1 Ul ~ + u2 ~x3 

c os(t on)u 
s in2t  2 1 + t2 ~us (2.36) 

where D s D n t I and t 2 are defined in Appendix D. The 
U' U' ' 

' istre&mwise" d i s s i p a t i o n  D s i s  e v a l u a t e d  in t h i s  s tudy  
U 

using the correlation developed by Donegan [421 and later 

s improved by Thomas [43] .  A c t u a l l y ,  the  p roduc t  cf  Du/2 

was correlated as 

c D s c D s 
f u _ f u -- Me ) (2.37) 
7 2 (H' Re@ll' 

This correlation was derived by numerically evaluating 

D s using a constant laminar plus turbulent shear stress in u 

the region very near the wall, the Cebeci-Smith eddy 

viscosity model [44] in the inner and outer regions, and 

the derivative of the velocity profile used in [28]. In 

the present study, the contribution of D n has been 
U 
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neglected in comparison to D s with the understanding that u 

significant error could be introduced in flows with large 

crossflow (see Appendix D). 

2.3. Relationships Between Streamwise Integral 

Lengths Using Johnston's 
Cross-Flow Profile 

As defined by Eq. 

w i s e  i n t e g r a l  l e n g t h  4 2 i s  g i v e n  by 

~q~ : - I PU n dx 3 
0 

(B.8) in Appendix B, the stream- 

(2.38) 

Using Eq. (2.31b) in Eq. (2.38) (according to Smith [14], 

only the outer part of Johnston's model is needed to 

evaluate streamwise integral lengths) results in 

Thus, 

oo 

m 

pqA* 2 = - A / ( pu s 
0 

- pu s ) dx 3 

oo 

= - A / [ (pu 
0 s - pu s )- U s ( 

= - A [ pqA 1 - pu s 8 ] 
P 

A 2 = - A ( A 1 - % 
P 

- p )] dx 3 

(2.39) 
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It is shown in Appendix E that the remaining integral 

lengths in streamline coordinates (GI2, 021, etc.) can 

* * E 1 , 0u, and 8p also be related to A, 41 , 6 u, 811, 1 

2.4. Relationships Between Streamwise and 
Nonorthogonal Integral Lengths 

As pointed out by Smith [14], all integral 

quantities in one axis system are uniquely related to 

those in the other and these relations are independent of 

the choice of cross-flow profile. For example, Smith [14] 

shows that the momentum thickness 811 in the nonorthogonal 

system is related to those in the streamline system as 

= 1 2~ 
811 2 [011 sin2~-(812+e21 )sin~ c°s~+022 cos ] (2.40) 

sin 

Stock [15] has listed all of these relationships using 

different nomenclature than that used herein; whereas 

Myring [13] and Smith [14] give the relationships between 

streamline and nonorthogonal displacement and momentum 

thicknesses. The complete list using the present nomen- 

clature is given in Appendix F. 

2.5. Reduction of the Number of Unknowns--Summary 

The number of parameters in the system can now be 

related to the three unknowns 011, H, and A. This process 

can be summarized as follows. If the values of @Ii' H, 
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and A are known at all points on the surface and at a 

particular time, and given the edge conditions p, Ul, u2' 

M e , ahd geometric parameters e, l, and ~, the following 

sequence of calculations produces all remaining unknowns 

in the system (Eq. (2.25)): 

i. Compute shape factor correlations 

H = H(H,M e) 

He. = He.(H,M e) 

Hep = H e (H,M e) 
P 

@ @ 
U -- U 

011 911 (H'Me) 

(see Appendix C) 

A 1 = H 6)11 

Eli = He* @ii 

2. Compute streamwise integral quantities A;, 

821' @12' etc. (see Appendix E). 

3. Compute streamwise skin friction (Eq. (2.33)), 

s 
8 w (Eq. (2.32)), CfDu/2 (see Appendix C), 

Cfx I and Cfx 2 (Eq. (2.35)). 

4. Compute nonorthogonal integral quantities 61, 

62 , e11, etc. (see Appendix F). 
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Using the relations between streamwise and non- 

orthogonal integral lengths given in Appendix F, the 

aforementioned empirical correlations, and assuming steady 

edge conditions, it is shown in Appendix G that 

Eqs. (2.25a,b,c) can be recast into matrix form as 

where 

A (U) = b (2.41) 
N 

A 

A = 3x3 coefficient matrix 

U = vector of unknowns 

T 
= (811, H, A) 

b = RHS vector containing spatial derivatives 

and edge conditions 

The elements of the matrix A and vector b are also given 

in Appendix G. Equation (2.41) represents a system of 

three first-order, nonlinear, coupled partial differ- 

ential equations for the three unknowns, 811, H, and A. 

The numerical approach taken here is to first reduce the 

above system of partial differential equations (PDE) to a 

system of ordinary differential equations (ODE) and then 

use a standard integrator for ordinary differential 

equations. Particular aspects of the numerical method 

used herein are discussed in Chapter III. 
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Chapter III 

NUMERICAL METHOD 

The aforementioned numerical approach is commonly 

referred to as the Method of Lines, which, as discussed by 

Ames [45, pp. 302-304], is primarily Russian in origin 

(see, e.g., Liskovets [46]). This numerical method was 

chosen for the present study because of the success 

demonstrated by Jameson et al. [47] who used this approach 

to solve the unsteady Euler equations in transonic flow, 

and in addition, showed that when using a Runge-Kutta 

scheme, convergence to a steady-state solution could be 

accelerated by using a local time-step as dictated by the 

local CFL number (Courant-Friedrichs-Lewy stability 

criterion). The approach taken here is also a Runge-Kutta 

scheme using a variable time-step to accelerate convergence 

(transient results were not considered important for the 

cases presented). 

3.1. Implementing Four-Stage Runge-Kutta 
for a System of PDE's 

Consider the single linear model equation 

8_uu + a 8u _ 0, a = constant > 0 
8t ~x 

(3.1) 
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applied in the x-t plane. By discretizing the continuous 

x-t space as depicted in Figure 3a, Eq. (3.1) can be con- 

verted to an ordinary differential equation by expressing 

the spatial derivative with an appropriate finite- 

difference approximation, or 

du. 
dt = - aD x(u;) --f(t,u;) (3.2! 

n 
where Dx(U i) is a finite-difference operator and i and n 

denote the i th value of u at a time level n. Writing 

Eq. (3.2) at each i mesh point at the n th time-level 

results in a system of ordinary differential equations 

which can be integrated using any standard ODE integration 

scheme. 

As mentioned above, a Runge-Kutta (R-K) scheme was 

chosen for the present study. The particular scheme is 

what is usually referred to as the "classical" R-K scheme 

(Eq. (20), p. 120 of Lambert [48]) is given here as 

where 

n+l = u n + d~ (k I + 2k 2 + 2k 3 + k4 ) (3 3a) 
ui i -- 

k I = f( t,u; ) (3.3b) 

k 2 f ( t + At n At 
= 2 ' ui + --2 kl) (3.3c) 
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Figure 3. Space Discretization. 
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= u9 + A~ k2 ) (3.3d) k 3 f( t + A~ , 1 -- 

k 4 = f( t + At , u nz + At k 3 ) (3.3e) 

which advances the solution at each i mesh point at time- 

level n to time-level n+l with a local truncation error of 

O(At5). 

For a model equation containing two space 

dimensions, Eq. (3.1) becomes 

~u 8u 8u = 
~ + a ~--~I +b ~ 2 0 

(3.4) 

where a and b are positive constants. Using a space-time 

discretization as depicted in Figure 3b, the corresponding 

ODE is 

d U  ° ° 

n n 

___!/ = _ aDxl ( ui~ J ) - bD ( ui= J ) (3.5) dt x 2 

g( t,u~j ) 

Applying the R-K scheme at each (i,j) surface grid point 

results in 

where now, 

n+l n A~ 
uij = uij + -- (k I + 2k 2 + 2k 3 + k 4) (3.6a) 
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k I = g( t u n ' lj ) 

At 
k 2 = g( t + --2 'At uijn + --2 kl ) 

k 3 = g( t + --2At , uijn + __A~ k2 ) 

k 4 = g( t + At, ug. + At k 3 ) 
z3 

(3.6b) 

(3.6c) 

(3.6d) 

(3.6e) 

The present set of equations (Eq. (2.41)) can be written 

in vector form as 

8U 8U 8U 
~--6 + M + N - c 

8x I 8x 2 
(3.7) 

where U is the vector of unknowns 

U = (811 , ~ , A) T (3.8) 

M and N are 3x3 matrices, and c is a vector. Thus, 

replacing the u.. in Eq. (3.5) with U.. results in 
z3 ~z3 

dU.. 

--~/ = - MijDxI( NzjU9 ) - NijDx2 ( u9 ) + c (3.9) 

and the solution for U.. can be advanced from n to n+l 

bsing Eq. (3.6) for each unknown (i.e., 011, H, and A). 
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Although a system of equations is involved, the 

numerical method described above is explicit (i.e., all 

quantities on the right-hand side of Eq. (3.6a) are khown). 

For s£ability, explicit methods are typically restricted 

to CFL numbers less than one. However, as discussed in 

the next section, the R-K scheme used herein permits the 

solution process to advance using CFL numbers greater than 

one, depending upon the type of space differences used. 

3.2. Stability and Convergence 

3.2.1. General 

As pointed out by Mitchell and Griffiths [49, 

pp. 181-182], "a stability analysis of a hyperbolic system 

in two-space dimensions is extremely difficult, even with 

A and B constant" (where in this case, A and B correspond 

to M.. and N..). For example, see [50] and [51]. It 
z3 z3 

follows that stability requirements used in the present 

study do not stem from an analysis on the complete system 

of equations in two-space dimensions, but rather from a 

Fourier analysis based upon a linearized version of 

Eq. (3.9) which has been "split" into two, one-dimensional 

(in space) problems. That is, stability requirements are 

based upon the "worst case" stemming from a separate 

analysis of each of the "split" equations 

43 



AEDC-TR-83-37 

and 

dU.. 
~z3 - M..D (un.) (3 10a) 

--a-£ z3 x I ~~3 

dU.. 
~z3 - .D ( n 
at Ni3 x2 Ui9 ) (3.10b) 

Actually, the requirements for stability come from 

analyzing the single linearized two-dimensional model 

equation, Eq. (3.5), where a and b are interpreted as 

eigenvalues of the Mij and Nij matrices, respectively 

(see Lambert [48], p. 227). Therefore, the equations from 

which the stability criterion is derived reduce to 

a n  • . 

13 _ 
dt Pij (M) Dxl (unj) (3. lla) 

and 

d u . ,  

dt 13 - Pij (N)Dx2(U~j) (3.11b) 

where Pij(M) and Pij(N) are the spectral radii of the Mij 

and Nij matrices, respectively, at each surface grid point. 

A stable time-step is chosen as follows: at the beginning 

of each time-step and for each mesh point: 

i. Compute the elements of the M and N matrices. 

2. Compute all eigenvalues of both M and N 

matrices and determine the spectral radius of 

each; that is, find Pij(M) and Pij(N). 
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AS will be shown presently, a local CFL stability criterion 

for the four-stage R-K scheme is given by 

p(M) o r  o(N) • ~ i j  

where CFL is determined from a stability analysis of the 

R-K scheme, and Ax is either Ax I or Ax 2. Thus, 

3. Compute each local time-step as 

(Atxl = [CFL • AXll 
)ij P(M) "J 

ij 

=[CFL Ax2] 

( Atx2 )ij PIN) ]ij 

4. Compute htij = mini (dtxl)ij , (Atx2)ij ]. 

Although not mathematically rigorous, this analysis 

for determining a locally stable time-step has proved to 

be somewhat conservative, at least for the cases con- 

sidered. For example, numerical experiments revealed that 

the van den Berg and Elsenaar test case (Section 5.4) 

could be computed successfully using backward space differ- 

ences and a local time-step which would require a CFL of 

1.55 (it will be seen that linear stability analysis gives 

a maximum stable CFL of approximately 1.3). It seems 

plausible, however, that just the opposite could occur 
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when considering the liberties taken during the course of 

the analysis; i.e., the "splitting" of the complete problem 

into two, one-dimensional problems, and, of course, using 

a CFL number derived from a locally linearized equation. 

Therefore, time-steps as determined from the above analysis 

should be used with care. 

3.2.2. Stability and Convergence Using 
Various Space Difference Approximations 

The stability characteristics of the R-K scheme 

used herein depend explicitly upon the type of difference 

used to approximate the spatial derivative (Dxl and Dx2) 

in Eqs. (3.11a,b). Stability of the model problem 

Eq. (3.2) is investigated in the present study using a 

Fourier analysis [45, pp. 47-48] with three different 

representations of Dx(U ~) ((i) first-order backward, 

(2) second-order central, and (3) second-order backward). 

Using this method, the propagation of a single row of 

errors represented by a Fourier series along some initial 

time line is examined to investigate the growth of the 

error for large values of time. 

iIn the present work, the "order" of a difference 
approximation is to be interpreted as the order of the 
local truncation error. For example, a second-order 
difference has a local truncation error of O(~x2). 
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Using a first-order backward difference for 

~u/Sx in Eq. (3.1) results in 

• 1 n n 

Dx(U;) A--x ( ui -ui-i ) (3.12) 

Thus, Eq. (3.2) becomes 

where 

du. 
z a n n 

= Ax V(ui) = f(t,ui ) dt 

V(ug) H u n - u~ 
z i -i 

(3.13a) 

(3.13b) 

Similar relations are obtained for second-order central 

Dx(U~) - 1 n n 2~x ( Ui+l - ui-I ) (3.14) 

and second-order backward differences: 

• 1 n n n 
Dx (un) = 2~x ( 3ui - 4ui-i + ui-2 ) (3.15) 

As given in Appendix H, the amplification factor JGJ for 

the R-K scheme Eq. (3.3a) using Eqs. (3.12), (3.14), or 

(3.15) is 

n+l 

JGI = = IR(CFL,~) + KI(CFL,~) I (3.16) 
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where 

At CFL = a -- (3.17) ax 

= wave number (linear function of Ax) 

K=/:Y 

and R(CFL,~) and I(CFL,¢) are the real and imaginary contri- 

butions of IGI, respectively, and are somewhat complicated 

functions of CFL and ~. The R's and I's resulting from 

the different difference representations are given in 

Appendix H. 

For the solution to remain bounded for large time, 

the condition 

IGI < 1 (3.18) 

must prevail. The behavior of IGI for the three space- 

difference approximations used is shown in Figures 4a, b, 

and c for second-order central, first-order backward, and 

second-order backward differences, respectively. 

Figure 4a illustrates the desirable feature of using 

second-order central differences in that a CFL of 2/2 

(approximately 2.8) can be used (this result was reported 

earlier by Jameson et al. [47]); whereas, using first- and 
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second-order backward differences require using CFL numbers 

of approximately 1.3 and 0.6, respectively, to maintain 

stability (Figure 4b and c). It should be noted that the 

R-K scheme using central differences is stable regardless 

of the sign of a [45]. 

Initially, the present system of equations 

(Eq. (2.41)) was solved using central space differences 

with a CFL = 2.8. Smoothing was required and although 

reasonable answers were obtained, convergence was not good 

and the amount of smoothing needed was problem-dependent 

(smoothing here means that a simple weighted averaging was 

performed after each time cycle). After examining the 

eigenvalues of the M.. and N.. matrices in Eq. (3.9), it 
z3 13 

was found that, for most cases considered, eigenvalues at 

each grid point for both coefficient matrices were positive. 

As shown by Steger et al. [52], a stable scheme for the 

model problem (with a > 0) can be constructed using back- 

ward space differences which has better dissipative and 

dispersion properties than that of a centered scheme. 

Figure 5 illustrates the convergence obtained for the 

dummy infinite swept-wing case of Cumpsty and Head [16] by 

solving the system of equations (Eq. (2.41)) using second- 

order central, first-order backward, and second-order 

backward spatial differences. Here, as in all cases 
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computed, convergence is measured by the root-mean-square 

of the 8H/St derivative, that is, 

[Ht] --- i i'j ~-6]i'J 
rms L NI • NJ 

1/2 

(3.19) 

For the solution obtained using central differences, the 

following simple smoothing scheme was used for the solution 

vector ~ij = (011' ~' A)T after each time-cycle: 

Ui+l, j+Ui-l, j+Ui, j+l+Ui, j-l+~Ui, j 
~ + 4 [2 ] = (3.20) 

ij smoothed 

with a = 8. 

From Figure 5, it can be seen that convergence for 

the backward schemes using no smoothing is much better 

than that obtained using central differences with smoothing. 

The convergence obtained using the backward schemes with 

no smoothing is essentially limited by the machine 

truncation error (in this case, approximately 14 signifi- 

cant digits). Also shown in Figure 5 is the convergence 

history of the first-order backward scheme with smoothing, 

which illustrates that convergence is limited when 

smoothing is applied. 

As mentioned earlier, Jameson et al. [47] showed 

that convergence could be accelerated by using local 
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time-steps (recall transient results were not considered 

important here). Figure 5 also illustrates how con- 

vergence is accelerated for the present system of equations 

by using spatially variable time-steps as opposed to using 

a constant time-step (i.e., maximum allowable over the 

field). Therefore, almost all of the solutions presented 

herein were computed using first-order backward differ- 

encing with spatially variable time-stepping and no 

artificial smoothing; however, as discussed in the next 

section, central differences were required for one test 

case, but only for the x 2 spatial derivative. 

3.3. Boundary and Initial Conditions 

Depicted in Figure 6 is a general computational 

mesh as used in the present method. The boundary con- 

ditions used to compute all solutions presented here were 

to fix or "clamp" the three dependent variables (@ii' ~' 

and A) along the initial start line (say, along the leading 

edge of a wing) and let the conditions at all other 

boundaries "float." That is, the dependent variables along 

all boundaries except the initial start line were computed 

in the.same fashion as those in the interior of the mesh 

using appropriately modified spatial differencing near 

each boundary. This essentially amounts to extrapolating 
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Figure 6. General Computational Domain. 
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the conditions at the boundaries from the interior of the 

computational domain. 

As previously mentioned, all eigenvalues of both 

the M.. and N.. matrices in Eq. (3.9) for most flow cases 
13 13 

are positive at each mesh point. Therefore, specification 

of boundary conditions along the initial start line (i = I, 

j = 1 ~ NJ) and extrapolation along the "outflow" boundary 

(i = NI, J = 1 + NJ) is compatible with the sign of the 

characteristics (eigenvalues). However, the signs of the 

eigenvalues of the N.. matrix were mixed at some mesh 
13 

points for one test case (to be presented) and central 

differences were used to approximate the Dx2(un lj) deriva- 

tive while using a CFL of 1.3 (see Chapter V, Section 5.7). 

For this test case, extrapolation of boundary conditions 

along the (i = 1 + NI, j = i) line and (i = 1 + NI, j = NJ) 

line is not correct if one adheres strictly to the infor- 

mation obtained from the sign of the eigenvalues. However, 

based upon the results to be presented, it seems that this 

erroneous treatment of conditions along the upper and lower 

boundaries does not significantly affect the outcome of 

the computations, at least for the cases considered. 

Solutions generated by the present method were 

found to be insensitive to initial conditions. This was 

determined by comparing steady-state solutions obtained 

using identical edge conditions but different initial 
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conditions. Therefore, the initial conditions used for 

all computations presented herein were to set the values 

of the dependent variables at each mesh point to those 

given along the initial start line (see Figure 6). 
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COMPUTATION OF SURFACE METRICS 

The primary objective of the present work was to 

develop a three-dimensional, time-dependent, turbulent 

integral boundary-layer computational capability that can 

be used for compressible adiabatic flow in nonorthogonal 

curvilinear coordinates. However, before any boundary- 

layer computations can take place, the surface metrics, 

i.e., h I and h 2 (scale factors), and K I, K 2 KI2, and K21 

(curvature terms) must be known. Most of the cases which 

have been computed thus far were such that specification 

of the surface metrics was trivial (i.e., h I = h 2 = 1 and 

K 1 = K 2 = KI2 = K21 = 0). Therefore, the effects of these 

parameters on the boundary-layer calculations in a general 

sense are not included in the present study. However, two 

test cases have been calculated which use surface metrics 

other than those for the trivial case: (i) an axisymmetric 

flow where the metrics are determined analytically, and 

(2) a finite swept wing case using a skewed mesh where the 

surface metrics are computed from the given Cartesian 

coordinates. 

As shown in Appendix A, all metrics depend 

explicitly upon derivatives of the given Cartesian 
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coordinates with respect to the chosen curvilinear coordi- 

nates, e.g., 8Xl/~X2. For the axisymmetric case, these 

derivatives are evaluated analytically; whereas, for the 

finite swept wing case, the surface derivatives were 

evaluated using simple central differences except near the 

boundaries where extrapolation was used; for example, 

= (h I) . This is a rather crude approxi- (hl)i,NJ i,NJ-1 
mation compared to, for example, the method described by 

Smith and Gaffney [53] who approximate the metric tensor 

using bicubic splines. However, computed results indicate 

that the approximations used here were adequate for the 

case considered, which was a flat surface. 
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RESULTS OF COMPUTATIONS 

Computations using the present method are compared 

with the results of seven experimental/analytical test 

cases in steady, turbulent flow. These data sets include: 

(i) the two-dimensional (planar) supercritical RAE airfoil 

flow of Cook, McDonald, and Firmin [54]; (2) the two- 

dimensional (axisymmetric) experiment reported by Winter, 

Rotta, and Smith [55] concerning the flow about a body-of- 

revolution; the infinite swept-wing cases of (3) Cumpsty 

and Head [16], (4) van den Berg and Elsenaar [56], and 

(5) Bradshaw and Terrell [57]; and the fully three- 

dimensional cases of (6) East and Hoxey [58], and 

(7) Humphreys [25]. The first two cases were run to 

investigate whether the results of the present three- 

dimensional, time-dependent method duplicate the results 

of its steady, two-dimensional predecessor [24]; whereas, 

the remaining cases test the three-dimensional compu- 

tational capabilities of the code. In addition, results 

using the present method are compared with results of other 

calculations when available. 
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5.1. RAE Airfoil--Two-Dimensional Planar 

The experiment of Cook et al. [54] involved the 

measurement of turbulent boundary-layer quantities over a 

planar, supercritical airfoil in adiabatic, high Reynolds 

number, transonic flow at various angles of attack. The 

particular flow conditions at which comparisons will be 

made are 

and 

M = 0.600 

= 6 . 3 x 1 0  6 Re 
~,c 

2.57 deg angle of attack 

which is denoted as Case 3 in [54]. 

Comparisons between experiment and results computed 

by the present method are shown in Figure 7 for displace- 

ment and momentum thicknesses, shape factor, and skin 

friction. Also given in Figure 7 are the results of the 

calculation method described in [24]. Comparing the 

results of the present method with those of [24] reveals 

that the curves are virtually indistinguishable, except 

for shape factor near the airfoil trailing edge, where the 

present results are slightly lower. In addition, the 

agreement between measured and calculated results is con- 

sidered good. 
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5.2. Waisted Body of Revolution-- 

Two-Dimensional Axisymmetric 

The objective of the investigation reported by 

Winter et al. [55] was to produce an axisymmetric, con- 

verging flow with an adverse pressure gradient to determine 

the effects of Mach number, pressure gradient, and stream- 

line convergence and divergence on adiabatic, turbulent 

boundary-layer development. Comparisons between results 

computed by the present method and by the method in [24] 

with experiment are made at the following freestream 

conditions: 

M 
O0 

Re 
--,L 

= 0.597 

= 9.98xi06 

The present computations were made using the following 

metric coefficients: 

hl = 1 

h 2 = r w = local body radius 

K1 = 0 

K 2 = 

KI2 = 0 

K21 =-K 2 

i Crwll 12 
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Figure 8a illustrates measured and computed distri- 

butions of skin friction, displacement and momentum 

thickness, and shape factor, and the agreement is con- 

sidered good. Differences between the present computations 

and those of [24] are seen to be rather small. In addition, 

Figure 8b gives comparisons between measured and computed 

boundary-layer velocity profiles at five axial locations 

down the body; the agreement is considered excellent. 

The results presented in Figures 7 and 8 for these 

special cases (i.e., two-dimensional-planar and 

axisymmetric) lend credence to the present method in that 

results generated by a previous method were essentially 

duplicated. The remaining cases were chosen such that the 

three-dimensional capabilities of the present method could 

be investigated. 

5.3. Cumpsty and Head--Infinite Swept Wing 

The Cumpsty and Head [16] "dummy" test case is 

that of an infinite swept wing in an incompressible flow 

with a constant linear gradient of chordwise velocity and 

a constant spanwise velocity, given by 
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,/q~ COS a O , X c < 0 

U e ---- 

c q= cos ~o (i - kx c) , x c > 0 

u e q~ sin et ° 

S 

where Uec and Ues are chordwise and spanwise edge veloci- 

ties, respectively, a o is the sweep angle, and k is the 

velocity gradient. The cases considered here are for 

= 35 deg, k = 0.250, and k = 0.267. All calculations 
O 

=0 were begun at x c 

Comparisons of results between the present method 

and the calculations of Cumpsty and Head [16] for momentum 

thickness, shape factor, wall streamline angle, and chord- 

wise skin friction are shown in Figure 9 for the case of 

k = 0.267. The agreement between the two calculation 

methods is considered good. It should be noted that the 

computations of Cumpsty and Head shown in Figure 9 are 

those resulting from using all the terms in their equations 

with overall iteration (curves labeled "7(a)" in [16]). 

Figure 10 compares the present calculations of chordwise 

skin friction with those of Cumpsty and Head [16], 

Cebeci [59], and Bradshaw [60] for the k = 0.250 case. 

Although the present computations are slightly lower than 
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those of the other investigators, correct trends are 

indicated. 

5.4. van den Berg and Elsenaar--Infinite Swept Wing 

The low speed flow of van den Berg and Elsenaar 

[56] involved probing the three-dimensional boundary layer 

on a flat surface swept at 35 deg with an external pres- 

sure distribution induced by an appropriately shaped body 

such that infinite swept-wing conditions were approxi- 

mately simulated (this experiment was performed specifi- 

cally for comparison to computational methods). Figure ii 

illustrates the measured flow angle and surface pressure 

distributions. Also shown in Figure ii are the analytic 

representations of measured flow angles and pressures. As 

suggested in [56], the analytical representations of the 

external flow conditions were used as input in the present 

computations. It is seen that measured pressures are 

represented well over the entire axial distance, whereas 

the expression for flow angle falls below those measured 

for x I > 1.05 m. Comparisons between measured and computed 

boundary-layer quantities are shown in Figure 12. Agree- 

ment between the computations and measurements upstream of 

x I = 1 meter is considered good; whereas, past this point, 

considerable discrepancies exist, particularly with the 

streamwise integral thicknesses. Similar results were 
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obtained by Cebeci and Chang [61] using a finite-difference 

method. However, as shown in Figure lla, the measured 

flow angles downstream of x I = 1 meter deviated from those 

which were used as input for the computations (the 

analytical representation was that for an infinite swept- 

wing [56]). Illustrated in Figure 13 is a comparison 

between computed wall streamlines and a surface oil flow 

photograph which indicates reasonable qualitative agree- 

ment between the experiment and the computations. 

An unsuccessful attempt was made to compute this 

flow using the measured flow angles as given by the symbols 

in Figure lla. According to the experiment [56], the flow 

was separated near the trailing edge and it is suspected 

that this phenomenon is responsible for an instability in 

the code which leads to program failure. (In fact, Delery 

and Formery [62] use this experiment to test their inverse 

method which also indicates that the flow was separated.) 

5.5. Bradshaw and Terrell--Infinite Swept Wing 

The experiment of Bradshaw and Terrell [57] was 

set up to test the outer-layer assumptions in extending 

Bradshaw's et al., calculation method [63] from two to 

three dimensions. This was an infinite swept wing in a 

low-speed flow where boundary-layer measurements were 

obtained over the rear, flat portion of the wing. The 

axial pressure gradient was nominally zero with a decaying 
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a. Oil Flow Photograph 

b. Computed Wall 
Streamlines 

le$ 

Figure 13. Computed and Measured Wall Streamlines for the 
van den Berg and Elsenaar [56] Test Case. 
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crossflow. Comparisons of computed and measured boundary- 

layer quantities are given in Figure 14. Agreement among 

measured and calculated skin friction, cross-flow angle 

distribution, and wall streamline angle is not as good as 

the computations of Cebeci [59] and Bradshaw [60] (which 

are differential methods). For this flow, East [i0] 

reported similar findings regarding the relative perform- 

ance of integral and differential methods, and blamed the 

poor performance of integral methods on the use of 

Johnston's [29] cross-flow profile which is not repre- 

sentative of a decaying three-dimensional flow, particu- 

larly in the wall region. East [i0] points out that this 

flow demonstrates how differential methods are generally 

more flexible than integral methods when applied to a 

variety of different types of flows. However, as shown in 

Figure 14c, the present computations of streamwise velocity 

agree very well with experiment. 

5.6. East and Hoxey--Fully Three-Dimensional 

The experiment of East and Hoxey [58] consisted of 

an obstruction placed in a thick two-dimensional boundary 

layer on the floor of a low-speed wind tunnel. Pressure 

gradients caused by the obstruction induced three- 

dimensionality and separation. Boundary-layer quantities 
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were measured upstream of the obstruction in a region off 

the plane of symmetry. Measured wall pressures and edge 

flow angles were used as inputs to the computations. 

Figure 15 gives comparisons of measured and computed 

boundary-layer parameters 6 inches from the plane of 

symmetry. Also shown are the results of Myring's integral 

method [13]. Good qualitative trends are obtained with 

the present method, although values of momentum thickness, 

shape factor, and wall streamline angle are generally 

underpredicted for Xl< 25 inches. Agreement between 

measured and calculated streamwise velocity profiles is 

considered satisfactory. 

Illustrated in Figure 16 are computed streamline 

patterns at the wall (those at the edge are input) along 

with those as deduced from the flow field measurements. 

Reasonable qualitative trends are indicated by the compu- 

tations except near the separation line (indicated in 

Figure 16b), which is not surprising because the present 

computations did not predict separation. 

5.7. 1978 Stockholm Test Case--Finite Swept Wing 

The 1978 Stockholm Test Case [25] was based upon 

the flow about a swept wing of modern configuration in 

high subsonic flow (M = 0.5, Re = 7xl06/unit length). 
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Effects of three-dimensionality and compressibility were 

small but non-negligible. Because the test case was 

designed to test three-dimensional boundary-layer calcu- 

lation methods, the inviscid velocity distribution was 

provided by a higher order panel method. The only experi- 

mental data provided for comparison were oil flow photo- 

graphs of the wing surface. Boundary values at the initial 

start line are given in [25]. Figure 17 gives the results 

at span stations 2, 4, and 6 as computed by the present 

method along with the range of all eight calculation 

methods which were compared in [25] for the case of zero 

angle of attack. Favorable agreement is seen to exist 

when comparing momentum thickness, shape factor, and skin 

friction; whereas, the present computations for 8w indicate 
J 

a more rapid increase for x/c > 0.4 at all span stations 

than do the other calculations. Figure 18 gives the wall 

streamline patterns as computed by the present method and 

as measured using oil flow visualization; good qualitative 

agreement is seen to exist between the computations and 

the measurements. 

Similar to the van den Berg and Elsenaar infinite 

swept-wing case [56] discussed in Section 5.4, another 

program failure was encountered when an attempt was made 

to compute the 8-deg angle-of-attack case reported in [25]. 
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Although the general consensus from the results reported 

in [25] was that the flow was not separated (also implied 

by surface flow visualization), it is again suspected that 

separation is responsible for the observed program failure. 

For this particular test case, the boundary con- 

ditions were not treated correctly according to the sign 

of the characteristics along both "side" boundaries; that 

is, (i = 1 ÷ NI, j = i) and (i = 1 ~ NI, j = NJ) (refer to 

Figure 6, page 54). The results presented in Figures 17 

and 18 indicate that this erroneous treatment of boundary 

conditions seems to have had little effect on the compu- 

tations for the zero angle-of-attack case. However, as 

noted above, the numerical procedure became unstable when 

attempting to compute the 8-deg angle-of-attack case; what 

effect (if any) the boundary conditions along the two 

"side" boundaries had on the computations for this test 

case is not known. 
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Chapter VI 

SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

A method for computing three-dimensional, time- 

dependent, compressible, turbulent boundary layers in 

nonorthogonal curvilinear coordinates has been presented. 

The method solves the time-dependent momentum and mean- 

flow kinetic energy boundary-layer integral equations 

which provides the viscous portion of a viscous/inviscid 

interaction approach where identical surface grids for 

both the viscous and inviscid calculation methods can be 

used. A four-stage Runge-Kutta time-stepping scheme was 

used to numerically solve the system of equations using 

local time steps to accelerate convergence. Several space 

difference approximations were employed and it was found 

that a backward scheme gave the best results using no 

artificial smoothing. Calculated results using the present 

method were compared to experimental data and to results 

of other calculation methods; satisfactory agreement was 

obtained. 

There are several areas where improvements could 

be incorporated which would in turn improve the overall 

outcome and performance of the present computational pro- 

cedure. Firstly, incorporation of a more general method 

of computing surface metrics is needed in order to properly 

address three-dimensional geometries: for example, the 
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procedures of Smith and Gaffney [53], or Craidon [64]. 

The use of a more general cross-flow velocity profile 

representation would make the present method more flexible 

with respect to the classes of flows which could be 

addressed. Although other models are available (e.g., 

Mager's cross-flow model [65]), none have sufficient flexi- 

bility to allow a three-dimensional integral method to be 

routinely applied to any flow field such that accurate 

results can generally be expected. As discussed in 

Appendix D, a more thorough treatment of the "cross-flow" 

dissipation is needed. However, to properly handle this 

term in the equations requires an accurate cross-flow 

model which is valid for a wide variety of three- 

dimensional boundary-layer flows. 

All calculations presented herein were performed 

using a CRAY-IS computer. Depending on the number of mesh 

points and type of spatial differences used, solution 

times ranged from 15 to 300 CPU seconds. This is somewhat 

slow considering the relative simplicity of the geometries 

involved. However, it is felt that performance of the 

numerical procedure could be improved significantly by more 

efficient coding and by incorporating a different numerical 

scheme. For example, a two-stage R-K scheme operating at 

a CFL of 0.9 was incorporated into the code and the 
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van den Berg and Elsenaar case [56] was recomputed. The 

solution was practically identical to that using the four- 

stage scheme with a 40% reduction in CPU time. 

It is apparent that the major deficiency of the 

present method is its inability to compute some flow 

fields: in the present study, the van den Berg and 

Elsenaar case [56] (infinite swept wing) using the measured 

wall pressures and edge flow angles, and the 1978 Stockholm 

test case [25] (finite swept wing) at 8 deg angle of 

attack. This seems to be a significant hindrance when 

considering using this method as one part of a viscous- 

inviscid interaction approach. On the other hand, knowing 

that the method has failed for a particular case could 

possibly be interpreted as signaling whether or not sepa- 

ration has been encountered, although no information is 

generated pertaining to its location. As discussed by 

Cousteix and Houdeville [66], and Delery and Formery [62], 

it is apparent that an inverse formulation of the boundary- 

layer equations is required if separated flows are to be 

addressed, even for a time-dependent computational method. 
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APPENDIX A 

SURFACE METRIC COEFFICIENTS 

Before boundary-layer computations can proceed, 

metrics associated with surface scale factors and curvatures 

must be determined. The following relationships for a 

general, nonorthogonal, curvilinear coordinate system 

embedded in the surface of a body (see Figure i, page 8) 

are listed by Cebeci et al, [17] and are given here for 

completeness in slightly different form. As before, the 

subscript "i" takes on values of 1 and 2, and subscript 3 

resulting from i + 1 when i = 2 is taken to be subscript i. 

: -  i:) + \:; 

Ki = hlh 2 sinl - hi+l 
cos~ ~-~iJ ~x:+:j 

Ki,i+l 

(A.I) 

(A.2) 

(A. 3) 

sinl i h i ~x i +c°sl i+l + 1 ~l - hi+ 1 ~x 
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~ - ~ L r t ~  / ~xj h i 
+ \~--~-7) t,~x~xj) 

+ t ~ - ~ " - / ' i / ~ 7 ~ j - / j  ( j  = 1 or 2) (A.5) 

~x i 

+ 

\~/t~x,~<~) t,~/t~x,~x~/ t~x~lt~x,~x~ ) 

(A. 6) 

~I i cosl + h 2 ~g 
~x i = hlh 2 sinl 1 ~ ~-~i) 

(A. 7) 

(It should be pointed out that hi, Ki, and Ki,i+ 1 must 

be computed at each mesh point in the computation domain.) 
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APPENDIX B 

DEFINITION OF STREAMLINE INTEGRAL LENGTHS 

Using the sketch below, velocities in the non- 

orthogonal axis system are related to those in a streamline 

system by the following relations [13,14]: 

u sin~ - u cos~ 
s n 

Ul ..... sinl (B.I) 

u sine + u cose 
s n 

u2 = s i n t  ( B . 2 )  

At the boundary-layer edge, u 
n 

--- 0. Thus, 

sin~ 
= Us si-  (B.3) 

-- -- sine 
u2 = Us sinl (B.4) 

where (Ul, u 2) are velocities resolved in the nonorthogonal 

system, and (u s , u n) are those in the streamline system 

(recall overbars denote values evaluated at the boundary- 

layer edge). 
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i' un / ~ x 2 '  u2 

/ ~ ~ ~  S, U s 

X I, U 1 

Sketch Showing Relationship Between Streamline 
and Nonorthogonal Coordinates (Planform View) 

Also, the resultant velocity is given by 

2 2 2 2 + u 2 
q = u I + u 2 + 2UlU 2 cosl = u s n (B.5) 

and at the boundary-layer edge, 

--2 -2 -~ --2 (B. 6 ) 
q = u I + u + 2~i~ 2 cosl = u s 

Thus, integral lengths in the streamline coordinate system 

can be defined as [13,14]: 

oo 
W 

P q A 1 = I ( p u s - pu s ) dx 3 (B.7) 
0 

co 

* dx 3 (B 8) p q A 2 = - I PU n 
0 

oo 

2 = I (~ -u ) dx (B 9) 
P q 011 PUs s s 3 

0 
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Oo 

-- -2 = I ( u - u ) dx 3 P q 012 PUn s s 
0 

(B.10) 

oo 

~2 

p q (921 = - I PUsU n dx 3 
0 

(B.II) 

GO 

---2 2 
p q (922 = - I pu n dx 3 

0 
(B.12) 

QO 

-~ ~3 E11 = I pu s (~2 _u 2 ) dx 3 
s s 0 

(B.13) 

OO 

~3 El 2 = I pu n 
0 

--2 2 
(u s -u s ) dx 3 (B.14) 

oo 

-~ ~3 = - I 2 dx 3 E21 PUsU n 
0 

(B.15) 

co 

-- --3 = - f pu3 dx3 P q E22 n 
0 

(B,I6) 

oo 

-- * = f (U -U ) dx 3 q AU 0 S S 
(B.17) 

oo 

q A = - f u dx 3 
v 0 n 

(B.18) 
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APPENDIX C 

STREAMWISE SHAPE FACTOR CORRELATIONS 

Except for the correlation derived by Donegan [37] 

for H e , all shape factor correlations used in the present 
P 

study are listed in [24], [42], and [43], and are given 

here for completeness: 

H = H (i +0.113 M2 ) + 0.29 M 2 
e e (C.l) 

(H0*)Me=0 

M 

= 1.48061+3.83781e -2H 
C~ 

1 + 0.33- 
8.5484 

-~-i] 
tan-i [ 1 .~ 

011 
e 
U 

(0.33 - - -  ) tanh I/2 
17.1 

] (C.2) 

(Hs*)M =0 + 0.028 M 2 e 
e 

He* = 1 + 0 . 0 1 4  M 2 ( C . 3 )  
e 

0.92 M 2 
e 

- 1 - M2 tanh[l.49(H-0.9)] (C.4) 
7.09 + 

e 

H 8 = M 2 (0 185 H + 0.150) (C.5) 
e P 
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c~ ~s [o i 6o3~ 
- .01167e -0"038~3 + ( 9 0xl0-81e 

2 

] ( + 0.0115 + ACFD/1000 / 1 + 0.025 M e 

where 

---n 
ACFD = raRe(911 ~I 

m = 650H- 743 H < 1.6 

n =-1.59H + 1.45 

w 

ACFD = m enRe011 

0,045H 2 
m= 3,25 e 

n = H/10000 - 0.0017 

>~>1.6 

(C.6) 
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APPENDIX D 

DISSIPATION INTEGRALS 

The resolution of the dissipation integrals 

(appearing as the last term in the mean-flow kinetic 

energy integral equation, Eq. (2.20)) from quantities in 

nonorthogonal coordinates to those in the streamline 

coordinate system is given in this Appendix. These 

manipulations are performed such that correlations derived 

for two-dimensional turbulent boundary layers can be 

utilized for the general three-dimensional case. 

From Eq. (2.20), the dissipation integrals are 

written as 

I ~TXl ~TX21 
_ 1 Oi Ul ~x3 ~x3 Du I + Du 2 ----3 -- + u2 dx 3 (D.I) 
Pq 

Integrating by parts and using the boundary conditions 

that 

[ Tx ] = [ u I ] = [u 2 ] = 0 (i = 1 or 2) 
z ~ 0 0 

(D.2) 

Equation (D.I) becomes 

D u + D u 
1 2 

1 ~<TXI = - ____--C~ O f 
Pq 

~u 1 ~u2~ 
8x3 + TX2 ~---~3) dx3 

(D.3) 
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Using the relations between velocities in nonorthogonal 

and streamline coordinates (see Eqs. (B.I) and (B.2) in 

Appendix B), Eq. (D.3) becomes 

~ ~u s 
= -i sin~ f TXl Dul + Du2 ----3 ~ x  3 dx 3 

p q sinl 0 

-- COS~ 

~u 

n dx 3 
I TXl 3x 3 

+ sine 
~u 

IT s dx 3 
0 x2 ~x3 

] + cose I ~ ___nn dx 3 (D.4) 
0 x2 3x3 

Substituting the outer portion (Eq. (2.31b)) of 

Johnston's cross-flow profile [29] into the above yields 

1 
Du I + Du 2 ±--3 

p q sinl 
~ ~u s dx 3 (sin~+Acos~) 0I ~Xl ~x--~ 

~u 1 + (sine-Acos~) I T ~ dx 3 
0 x2 ~x3 

(D.5) 

The total shear stress in the x I and x 2 directions can be 

resolved into streamwise components as 
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1 
~x I sinl ( ~s sin~ - T n cos~ ) (D06a) 

1 
Tx 2 sinl (Ts sine + T n cose ) (D.6b) 

where T s is the streamwise component of the total shear 

stress and T is normal to it. 
n Substituting Eq." (D.6) 

into (D.5) gives 

where 

1 cf DS(t D n ) 
= u +t2__uu Dul + Du2 - ~ s i n  )~ 2 1 D s 

U 

(D.7) 

t I = sin2~ + sin2e +A(sin~ cos~ - sine cose) 

t 2 = -sin~ cos~ +sine cose -A(cos2~ +cos2e) 

++  (ul 
D s = f s \q ! dx 3 
u 0 Ts w ~x3 

(D.8a) 

(D.8b) 

(D.8c) 

+ + 
D n = f tan8 s \q / 
u 0 Ts ~x3 

W 

dx 3 (D. 8d) 

and the relation 

T = T tan8 
n s 

(D.9) 

has been used in Eq. (D.8d) 
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As discussed in Section 2.2.4, Eq. (D.7) is evalu- 

ated in the present study using a correlation for 

DS/2 [42,43] and assuming that cf U 

D n 

--u << 1 
D s 
U 

(D.IO) 

In principle, the "crossflow" dissipation (Eq. (D.8d)) 

could be correlated in an analogous manner as was done for 

"streamwise" dissipation if tan8 could be evaluated 

analytically for the general case. For example, the total 

shear stress components in streamline coordinates are 

1 
given as 

~u 
___~S U! 

T s = p ~x 3 P sU~ 
(D.lla) 

~U 
n , , 

= p - -  - PUnU ~ j Tn ~X 3 
(D.llb) 

1 The overbars and primes denote time-averaged and 
fluctuating quantities, respectively; e.g., 

t+T 
u'u' 1 I ' ' 

- (UsU 3 ) d t  s 3 2T t-T 

where the averaging period T is much larger than the time 
scale of the fluctuations (see [31] and [44]). 
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The Reynolds stresses can be modeled using the eddy 

viscosity concept (e.g., see [59]) as 

~u 
- pulu] ~ ~ s 

~3 tl ~x3 
(D.12a) 

~u 
, , ~ n 

- PUnUx3 ~ t  2 ~x 3 (]9.12b) 

where and are the eddy viscosities, and p is the 
Pt I Pt 2 

molecular viscosity. Thus, Eqs. (D.lla,b) become 

~u 
= (p+p ) s 

s t 1 ~ 
(D.13a) 

~u 

Tn = ( ~ + ~t2 ) -3 ~ (D.13b) 

Therefore, tan~ could be evaluated using 

T 
tan8 - n (D. 14) 

T 
s 

by using Johnston's cross-flow profile [29] for u n and by 

making appropriate assumptions concerning the evaluation 

of the eddy viscosities and (e.g., see [59]) . 
~t I ~t 2 
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However, similar to the "streamwise" dissipation 

correlation [42,43], which is based upon a very general 

description of the streamwise velocity profile [28] and an 

eddy viscosity formulation (~tl) derived from two- 

dimensional boundary-layer analysis [44], a correlation of 

the "crossflow" dissipation would, in turn, be based upon 

the cross-flow velocity profile plus an additional eddy 

viscosity formulation (~t2). Therefore, in lieu of the 

lack of generalities of both the cross-flow profile repre- 

sentation and the eddy viscosity ~t2 , the contribution of 

D n was simply neglected in comparison with D s. Obviously, 
U U 

more study is needed concerning the evaluation of D n. 
U 
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APPENDIX E 

RELATIONS BETWEEN THE STREAMWISE INTEGRAL LENGTHS 

For a given cross-flow velocity profile, certain 

relations exist between streamwise integral lengths which 

enable the 13 unknowns to be expressed in terms of five. 

These relations are given here for the Johnston cross- 

flow profile [29] only. 

The 13 unknowns in streamline coordinates are 

. • , 02 , * . AI' A2' 011' 012 i' 022 Ell' El2' E21' E22' Au' Av' 

and O (see Appendix B for these definitions). As an 
P 

example of how these integral lengths are interrelated, 

consider Eq. (B.12) : 

- -2 2 
p q 022 = - / pu n dx 3 (E.I) 

0 

Thus, using only the outer portion of Johnston's cross- 

flow model [29,14] r 

oo 

--p --2q 022 = - A2 / ( pu2-2pu-u-+pu2s s s S ) dx3 
0 

co 

= - A20 / [~s (p Us-PUs ) -~2(~-P)s -PUs (~s-Us) ]dx3 

A 2 ; --2 -- --2 A -~ u 
= - [P Us s 

--2 
8 p-'p U s @ii ] 
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or, 

= A2 - A 1 ) (E 2) 022 ( @ii + 0p 

The remaining relationships can be derived in an analogous 

manner, and are summarized as follows: 

A 2 = - A (A 1 - 8p ) 

* @ - 
012 = A ( A 1 - P 

(E .3) 

011 ) (E.4) 

021 = - A 011 (E.5) 

= A 2 * 
022 ( @ii + Op - A 1 ) (E.6) 

= A 2 
E21 (Ell - 2011 ) (E.7) 

El2 = A (AI + @ii - Ell - Op ) (E.8) 

= - A 3 * + - 3 ) E22 (A 1 - 0p Eli @ii (E.9) 

A* - A A* v = u (E.10) 

It is computationally more efficient to use the shape 

factors as defined in Eq. (2.27) and rewrite Eqs. (E.3) to 

(E.10) as 

021 = - A 011 (E.II) 

A2* = 021 (H - H0 ) (E.12) 

P 

109 



AEDC-TR-83-37 

012 = 021 - A 2 

022 = - A @12 

El2 = 012 + 021 (Hs, - 2 ) 

E21 = - 022 - A El2 

E22 = - A (E21 - 022 ) 

A* = - A A* 
V U 

(E.13) 

(E.14) 

(E.15) 

(E.16) 

(E .17) 

(E .17) 
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RELATIONS BETWEEN INTEGRAL LENGTHS IN STREAMLINE 
AND NONORTHOGONAL COORDINATE SYSTEMS 

The derivation of the relationships between the 

integral thicknesses in the two coordinate systems is 

algebraically tedious but straightforward (as cited 

earlier, Smith [14] gives as an example the derivation of 

811 in terms of @ @ etc ) The complete list of the ii' 12' " • 

12 relationships is as follows (recall that upper-case 

Greek letters denote integral lengths using velocities 

expressed in the streamline coordinate system; whereas, 

lower-case Greek letters represent those resolved in the 

nonorthogonal system): 

* _ 1 * sing -A* 61 sinl (AI 2 cos~) (F.I) 

6" - 1 ; 
2 sinl (A sine +A*2 cosa) (F.2) 

1 
- [011 811 sin21 

2 
sin ~- (012 + 021)sin~ cos~ 

+ 022 cos2~] (F.3) 

812 - 
1 

sin~l [@ii sina sin~ + 012 sin~ cosa 

- 021 cos~ sine-022 cosa cos~] 

21 
1 

sin21 [011 sine sing + 021 sing cosa 

- 012 COS~ sine-022 coss cos~] 

(F.4) 

(F.5) 
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822 - 1 [011 sin2~ + (012 +021)cos~ sin~ 
sin21 

+ 022 cos2~] (F.6) 

ell 1 [ sin3~ 2A;)sin2~ cos~ sin3@ Ell -(3E12 + 

+ 3E21 sin~ cos2~ -E22 cos3~] (F.7) 

el2 
1 2 

- [Ell sin~ sin ~ -2(E12 
sin31 

9: 
+A 2)sine sin~ cos~ 

+ E21 sine cos2~ +El2 sin2~ cos~ 

- 2E21 sin~ cos~ cose +E22 cos2~ cose] (F.8) 

e21 - 

1 
sin31 [Eli sin~ sin2~ + 2(E12 +A;)sin~ sin~ cose 

+ E21 sin~ cos2e -El2 sin2e cos~ 

- 2E21 sin~ cos~ cos~ - E22 cos2e cos~] (F.9) 

1 
- [E 1 e22 s in31  1 

sin3~ + (3El2+2A;)sin2~ cose 

+ 3E21 sine cos2a +E22 cos3e] (F.10) 

~* _ 1 (A* sin~ -A* cos~) 
u I sinl u v (F.II) 

6- 1 A* u2 = ~ (A~ sin~ + v cose) (F.12) 
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APPENDIX G 

FORMULATION OF THE SYSTEM OF EQUATIONS 
FOR SOLUTION 

The system of equations (Eq. (2.25)) can be 

written as 

~6~ ~1 BOp _ 

~t -- ~t q 
b I (G.la) 

~-6(011 + 822) = b 2 

~2 u 2 28£ 
~t -- ~t q 

(G.ib) 

= b 3 (G. ic) 

where bl, b 2, and b 3 are defined by referring to 

Eq. (2.25). Consider Eq. (Gl.a) first. Using Eq. (F.I) 

from Appendix F and the definition of H 

becomes 

0 I 

P 
Eq. (G .la) 

1 * - * cos~ 
--~t ~-~ ( A I sin~ A 2 q (H 8 811) =b I (G.2) 

Using Eq. (E.3) from Appendix E and various shape factor 

definitions, some algebraic manipulation gives 
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[sin~ cos~ 
s-IF[ H +s-IHy AH 

cos~ ~I ] 8811 
Ei-EY ~a~e - -  He g-~ 

P q P 

[ cos~ Ul ] !~ 
L s in) t  AOll  +-~- 811 ~t  q 

[sin~ cost A] 3H 
+ ~llL~-~ + ~ 

[cos~ i] aA 
+ Lsin I (H-Hsp) 81 ~ = b I (G.3) 

Recall from Section 2.5 that 

H = H(H, M e) 

H 8 = H 8 (H, M e) 
P P 

(G.4a) 

(G. 4b) 

such that 

3H ~H 3H aH aMe 
~t - ~)~ at + 3M e at 

(G. 5a) 

~H8 ~H8 -- ~He ~M 
.___p_ = p ~H +___£__~e 
3t 3~ at ~M e 3t 

(G. 5b) 

For the case of steady edge conditions, ~Me/at = 0. Thus, 

using the shape factor correlations given in Appendix C, 

Eqs. (G.5a,b) become 
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BH 2 BH ~-~ = (i + 0.113 M ) ~-~ (G. 6a) 

~H 
A 

%p (0.185 M'" Bt = e" ~-6 (G. 6b) 

Substituting Eqs. (G.6a,b) into Eq. (G.3) results in 

[sin~ cos~ 71 Pl 26)11 
H + s--l-6~ (H-He) A---~ H 8 ~t 

P q 

[cos~ 2 e sin~ + ~ A811(I-0.072 M ) +s--~ @ii (I+0"113 M 2)e 

2 Ul 81 ~-t+ (H_H8) 81 ~-t=bl - 0.185 M e q ~ P (G.7) 

Analogous results can be obtained for Eqs. (G.ib,c). 

After these operations have been performed, the final form 

of the equations can be written as 

where 

all a12 a13 

a21 a22 a23 

a31 a32 a33 

. - u 

I 

ell b 1 

= b 2 ~t 

A b 3 

(G.8) 
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I 

cos~ Ul _ sin~ H +-- A(H-H )--- H 
all sinl sinl O - 0 

P q 
(G.9) 

sin~ 2 
_ cos~ A@II(I_0 072 M ) +s-i-n-~ @ii (I+0 113 M ) a12 slnl " 

- 0 185 M 2 ~i 
" e ~ 011 (G.10) 

cos~ 
a13 = ~ (H-He)@11 

P 
(G .ii) 

a21 - 

a22 - 

1 [ sin2~ +sin2e 
sin2l 

+ A(H-H 8 -2)(cose sine-cos~ sinE) 
P 

- A 2(H-H O -l) (cos2~ +cos2~) ] 
P 

1 
sin21 [ A@II (cose sine - cos~ sin~) 

A 2 (cos2~ +cos2e) ] (1-0.072 M 2) 
- GII 

(G.12) 

(G.13) 

a23 

a31 

1 
sinq [ 011(H-H0 -2) (cose sine-cos~ sin~) 

P 

- 2A@II(H-H 8 -i) (cos2~ +cos2e) ] 
P 

sine cose ~2 
- sin~ H sinl A(H-H0 ) -~ H p e 

(G.14) 

(G.15) 

a32 
sine 2 e 
si--n-~ °11 (1+0"113 M ) 

- 0 185 M 2 u2 
" e --C 011 

q 

cOSesinl A011 (I-0"072 M2) 

(G.16) 
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cosa ) 
a33 = sinl (H-H0 011 

P 

bz _ ~< z 
~ ~2 

hlh 2 sinl p q 

~ 12 

(h 2 sinl p q Oll ) 

+ ~--~2 (hl sinl ~ 012 + + 
hlq 8xl h2q 8x2 

- K 1 cotl --61 + O 1 +K 2 cscl 62 + 82 

+ KI2 62 ) } + 81 - 2 cfxl 

[8_~ 1 ----2 -- 1 ~2 ~ ( h 2 sinl p q 
b3 = - q ~hlh 2 sinl 

821 ) 

+ 8-~2 ( h I 
Z~ 2 sinl ,]+ - 7 hi{ h2~ 

- K 2 cotl 62 + 82 + K 1 cscl _ 61 + 81 

+ K21 ~1 + (121 - ~ Cfx2 

(G.17) 

(G. 18) 

(G.19) 
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~2 1 b 2 = - 25 ~ ~3 hlh2 sinl 
I~x~ [h2 sinl ~3 ( ell + E21 ) ] 

-- --3 +e 2 ) ]} + ~ [h I sinl p q ( El2 2 

Ul ~i 1 6 * ~2 
Ull ~ hl~2 1 u 2 + h-~"~.'~- c 6~. - 6 .  + ~  ¢~2 6"-~ '1  

* 8 ~i u2 6 * ~ ~2 
+ 1 ( ~i * - ~2 + -- ( * - ) h2~2 62 6Ul~ ~ h2~2 62 u 2 

__2 

- K 1 cotl ii +----2 ( 61 - 
q 

--2 

- K 2 c o t t  e22 +_-_-_-_-_-_-_-_-_-C~ ( 62 - 
q 

--2 

+ K 1 cscl 12 +~ ( 62 - 6 2 ~ 

+ K 2 cscl [~21 

--2 
u2 *-6* )] 

+~ (61 u I 

[l * - ~2 6Ul)] + KI2 el2 +-----2 (~i 62 
q 

e [2 * * ] 
+ K21 21 +-~2 (52 61 -~i 6u 2) q 

~i ~2 
+ (Du I +Du 2 ) - m bl --- b 3 (G.20) 

(Note that b 2 and b 3 are listed above in reverse order. This 

is for computational convenience because b 2 is defined in 

terms of b I and b3). 
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APPENDIX H 

LINEAR STABILITY ANALYSIS OF THE MODEL PROBLEM 
USING FOUR-STAGE RUNGE-KUTTA WITH VARIOUS 

SPACE DIFFERENCE APPROXIMATIONS 

First-Order Backward 

Recall from Eq. (3.13), the model equation can be 

written using first-order backward differences as 

where 

du. 
i _ a ,7 (u n u n ) (H la) 

dt Ax i ) = f(t, 1 

V ( un ) = un n 
x i - ui-i (H.ib) 

Substitution of Eq. (H.ib) into Eqs. (3.3b-e) results in 

kl = a n Ax ? ( ui ) (H.2a) 

k 2 = k I + a2At V2 u n 
2(Ax) 2 ( i ) (H.2b) 

3 2 
k3 = k2 a (At) V3 u n 3 ( i ) (H.2c) 

4 (Ax) 

4 3 
k4 = _k I + 2k 3 + a (At)4 V4 ( unl ) (H.2d) 

4 (Ax) 
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where 

2 u n u n _ 2u n + n 
V ( i )= z z-1 ui-2 

V 3 u n u n 3u n 
n u n 

( ) = - + 3u'." - 
i 1 l-i z-2 i-3 

V4 ( un ) = un- 4un + 6un 2- 4un 3 + un 
z z -i - - i-4 

(H.3a) 

(H.3b) 

(H.3c) 

By letting the solution at time-level n be represented by 

where 

n y (iAx) <i~ u. = e K- = e 
1 

= yAx (y = constant) 

(H.4) 

and use the definition e -+<~ = cos~ -+ <sin~, successive 

substitutions result in the R-K scheme being expressed as 

where 

n+l u. 
1 
n u. 
1 

- R(CFL,~) + KI(CFL,~) (H.5a) 

1 2 
R(CFL,#) = 1 - (CFL) (l-cos~) +~(CFL) (l-2cos~ +cos2#) 

_ I(CFL )3(I_3cos~ + 3cos2# -cos3~) 

+ ~4(CFL )4(I_4cos~ + 6cos2# - 4cos3~ +cos4~) (H.5b) 
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1 2 
I(CFL,~) = - (CFL)sin~ +~(CFL) (2sin~ -sin2#) 

1 3 
- ~(CFL) (3sin# - 3sin2~ +sin3#) 

+ ~4(CFL )4 (4sin~ - 6sin2~ + 4sin3~ - sin4#) 

and 

AEDC-TR-83-37 

(H.5c) 

At 
CFL = a A-~ (H.5d) 

Thus, the amplification factor IGI is 

j un+l 
= [ R2(CFL,~) + I2(CFL,~) ]1/2 (H.6) 

which must be less than one for the solution to remain 

bounded as n + ~. 

Similar expressions can be obtained for R(CFL,~) 

and I(CFL,~) for second-order central and second-order 

backward spatial differences, as follows. 

Second-Order Central 

R(CFL,~) = 1 - I(CFL)2 sin2~ + fi(CFL) 4 sin4~ (H.7a) 

I~CFL,~) = (CFL) sinO- I(CFL)3 sin3O (H .7b) 
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Second-0rder Backward 

3 1 R(CFL,#) = 1 - (CFL) ( ~- 2cos~ +~ cos2~) 

9 ii 1 + (CFL) 2 (~- 3cos~ +~- cos2~ -cos3~ +~ cos4~) 

9 9 57 cos2# _i~ cos3# (CFL)3 (16 4 cos~ +i-6 

+ ~-6 COS4#-4 cos5~ + COS6~) 

27 9 cos~ + 81 ~5 + (CFL) 4 (128 8 ~--~ cos2~ -m cos3~ 

443 25 9 1 
+ i--~ cos4~ -~-~ cos5# +~ cos6~ -~ COS7# 

1 + ~ cos8~ ) (H. 8a) 

1 I(CFL,~) = - (CFL) (2sin~ -~ sin2#) 

ii 1 + (CFL) 2(3sin# --~- sin2~ + sin3~ -~ sin4~) 

9 sin# _57 (CFL) 3 (4 i-6 
19 

sin2# + sin3# -i-6 sin4~ 

1 1 + ~ sin5#-~ sin6~) 

9 81 ~ 443 sin4# + (CFL) 4 (~ sin# -~-~ sin2~ + sin3# -i--92 

25 9 sin6~ + 1 1 sin8~ ) + ~-~ sin5~ -3--2 ~-~ sin7~ 384 (H.8b) 
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NOMENCLATURE 

Symbol 

a,b 

a , , 

z] 

A 

b 

bl,b2,b 3 

c 

c 

cf 

Cfx i 

CFL 

c 
P 

ACFD 

Dx,Dxl,Dx 2 

DuI,Du 2 

s D n Du' u 

Constants used in model equation, 
Eqs. (3.1) and (3.4) 

Elements of A--see Appendix G 

Parameter used in Johnston's cross-flow 
velocity profile, Eq. (2.31b) 

Coefficient matrix of the system of 
equations to be solved, Eq. (2.41)--see 
Appendix G 

Vector defined by Eq. (2.41)--see 
Appendix G 

Components of b 

Airfoil chord 

Vector used in Eq. (3.9) 

Skin friction coefficient using streamwise 
component of wall shear stress 

Skin friction coefficient using shear 
stress component in x.-direction, 
Eq. (2.12) z 

a At/Ax, Eq. (3.17) 

Static pressure coefficient 

Parameter used in Appendix C 

Spatial difference operators, Eqs. (3.2) 
and (3.5)--see Appendix H 

Dissipation integrals expressed in the 
nonorthogonal coordinate system-- 
see Eq. (D.I) 

Dissipation integrals, Eqs. (H.Sc) and 
(H.8d), respectively 
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Symbol 

n 
f(t,u i ) 

F 
C 

g 

g(u n 
ij ) 

IGI 

hl,h 2 

H 

H 

H O * 

HOp 
( Ht ) rms 

i,j 

k 

kl,k2,k3,k 4 

KI,K2,KI2,K21 

o 

l 

L 

LI,L2,L3,L 4 

m,n 

Defined by Eq. (3.2) 

Compressibility factor, Eq. (2.34d) 

Variable used in computing metric 
coefficients--see Appendix A 

Defined by Eq. (3.5) 

Amplification factor, Eq. (3.16)--see 
Appendix H 

Surface metric coefficients, Eq. (A.I)-- 
see Appendix A 

Streamwise shape factor, Eq. (2.27b) 

"Incompressible" shape factor, Eq. (2.27a) 

Streamwise shape factor, Eq. (2.27d) 

Streamwise shape factor, Eq. (2.27c) 

Convergence parameter, Eq. (3.19) 

Parameters corresponding to Xl,X 2- 
directions, respectively 

Imaginary part of IGJ, Eq. (3.16)--see 
Appendix H 

Velocity gradient 

Defined in Eq. (3.3) or (3.6) 

Surface curvatures, Eqs. (A.3) and A.4)-- 
see Appendix A 

Defined by Eq. (2.21) 

Defined by Eq. (2.22); also denotes body 
length 

Used in writing Eq. (2.6)--see Eq. (2.13) 

Used as parameters in Appendix C 
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Symbol 

M,M.. 
x3 

N,Nij 

NI,NJ 

P 

q 

r 

r w 

R 

Relength 

t 

tl,t 2 

At 

T£ i 

T L 

u. 
1 

U • , 

13 

Uec,Ue s 

U ,U 
S n 

AEDC-TR-83-37 

Coefficient matrices for ~U/~x I and 

~Ui=/Sx~ vectors, respectively, 
Eqs. (3.7) and (3.9) 

Coefficient matrices for ~U/~x 2 and 

~Uij/~x2 vectors, respectively, 
Eqs. (3.7) and (3.9) 

Maximum values of i and j, respectively 

Static pressure 

Magnitude of total velocity 

Position vector--see Figure 1 

Local body radius 

Real part of IGI, Eq. (3.16)--see 
Appendix H 

Reynolds number based on some character- 
istic length; e.g., Re011 

Time 

Defined by Eqs. (D.8a,b) 

Time-step increment 

Defined in Eq. (2.24) (i = 1 or 2) 

Defined in Eq. (2.24) 

Velocity in x.-direction; also denotes 
z 

general dependent variable in model 
equation--see Chapter III 

Any component of the vector of dependent 
variables at the (i,j) mesh point 

Chordwise and spanwise velocity components, 
respectively, used as inputs for Cumpsty 
and Head Test Case--see Section 5.3 

Velocity components in streamline coordi- 
nate system 
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Symbol 

U 

U • • 

X 
C 

X, 
l 

l 

H,A) T Vector of dependent variables = (@ii' 
--see Eq. (2.41) 

Vector of dependent variables at (i,j) 
mesh point--see Eq. (3.9) 

Chordwise coordinate--see Figures 8 and 9 

General curvilinear coordinate 
(i = 1,2,3)--see Figure 1 

Cartesian coordinate (i = 1,2,3)--see 
Figure 1 

Ax Either Ax I or Ax 2 

Greek Symbol 

(X 
O 

Bw 

Y 

l 

A* * * i'Au'Av 

Angle measured positive from xl-axis to 
local resultant edge velocity vector 

Sweep angle 

-I 
tan ( Un/U s- ) 

Angle between resultant wall shear stress 
vector and resultant edge velocity vector 

Ratio of specific heats, taken as 1.4; 
also used as an arbitrary constant in 
Appendix H 

Displacement thickness defined using 
velocities in nonorthogonal coordinate 
system, Eq. (2.10a) 

Displacement thickness defined using 
velocities in nonorthogonal coordinate 
system, Eq. (2.10d) 

Finite-difference operator--see Appendix H 

Displacement thickness defined using 
velocities in streamline coordinate 
system, Eqs. (B.7), (B.8), (B.17), (B.18) 
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z3 

m ° 0 

z3 

° • 

z3 

8 
P 

8ij,@ u 

P 

~t i 

P 

Pij(S),Pij(N) 

Tx i 

Energy thickness defined using velocities 
in nonorthogonal coordinate system, 
Eq. (2.10c) 

Energy thickness defined using velocities 
in streamline coordinate system, 
Eqs. (B.13)~(B.16) 

Momentum thickness defined using velocities 
in nonorthogonal coordinate systems, 
Eq. (2.10b) 

Density thickness, Eq. (2.10e) 

Momentum thickness defined using velocities 
in streamline coordinate system, 
Eqs. (B.9)+(B.12), (2.27a) 

/zy 

Angle between x and x 2 axes, measured 
positive from t{e x I to x 2 coordinate axis 

Molecular viscosity 

Eddy viscosity, Eqs. (D.12a,b) 

Density 

Spectral radii of M and N matrices, 
respectively, at (i,j) mesh point 

Total shear stress (molecular plus 
turbulent) in x.-direction 

1 

Wave number 

Smoothing factor, Eq. (3.20) 
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Subscripts 

edge 

i or i,j 

s,n 

W,O 

X , 
l 

OO 

Denotes boundary-layer edge value 

Denotes quantity evaluated at the (i) or 
(i,j) mesh point; also denotes parameters 
corresponding to x.- or x.-direction 

i 3 

Denotes quantity resolved in the stream- 
line coordinate system 

Denotes quantity evaluated at the body 
surface 

Denotes quantity in the xi-direction 

Denotes free-stream condition 

Superscripts 

( ) 

n 

Denotes boundary-layer edge value; also 
denotes "incompressible" quantity 

Denotes quantity using velocity normal to 
streamwise direction 

Denotes quantity using streamwise velocity 
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